Luminescence Properties of Europium Ion Doped Barium Borophosphate Phosphor

Article Preview

Abstract:

A series of BaBPO5 phosphors doped with different concentration of Eu2+ ions were synthesized by solid state reaction method. The reduction of Eu3+ to Eu2+ ions were obtained by heating in pure argon atmosphere. The structural properties were analyzed by using X-ray diffraction (XRD). Luminescence properties were measured at room temperature using photoluminescence (PL) spectroscopy and the effects of europium ion in the phosphor were investigated. The XRD results showed that crystal structure of the phosphor is hexagonal single phases. The addition of europium ions exhibit a broad emission band in the violet region peaking at 383 nm corresponding to transition of configuration state 4f6 5d à 4f7 (8S7/2) of Eu2+ ions. The emission intensity is affected by the concentration of Eu2+. The optimum intensity is observed for 0.2 mol % of Eu2+ ion. The occurrence of emission lines in violet region indicates that this phosphor has potential in solid-state lighting application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

559-564

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Tonchev, E. Muzar, G. Okada, I. Kostova, Zl. Stoeva, G. Patronov, B. Morrell, S. Kasap, J. of the University of Chemical Technology and Metallurgy, 47, 4 (2012) 439-448.

Google Scholar

[2] Y. Huang, K. Jang, W. Zhao, E. Cho, H. S. Lee, X. Wang, D. Qin, Y. Zhang, C. Jiang, H. Jin Seo, Journal Of Solid State Chemistry 180 (2007) 3325–3332.

DOI: 10.1016/j.jssc.2007.09.030

Google Scholar

[3] X. Li, D. He, P. Lu and Y. Wang, Key Engineering Materials Vols. 368-372 (2008) pp.366-368.

Google Scholar

[4] C. Qin, Y. Huang, W. Zhao, L. Shi, H. Jin Seo, Materials Chemistry and Physics 121 (2010) 286–290.

Google Scholar

[5] D. Schüler, M. Buchert, R. Liu, S. Dittrich, C. Merz, Öko-Institut e.V., Darmstadt, January (2011).

Google Scholar

[6] T. Baby and V.P.N. Nampoori, Solid State Communications, Vol. 81, No. 4 (1992) pp.367-369.

Google Scholar

[7] Y. Shuanglong, C. Xianlin, Z. Chaofeng, Y. Yunxia, C. Guorong, Optical Materials 30 (2007) 192–194.

DOI: 10.1016/j.optmat.2006.11.056

Google Scholar

[8] H. S. Jang, Yu-Ho Won, S. Vaidyanathan, D. H. Kim, D. Y. Jeon, Journal of The Electrochemical Society, 156 6 (2009) J138-J142.

Google Scholar

[9] Y. Penghui, Y. Xue, Y. Hongling, J. Tingming, Z. Dacheng, Q. Jianbei, Journal Of Rare Earths, Vol. 30, No. 12 (Dec 2012) P. 1208.

Google Scholar

[10] T. Wanjun, F. Tingting, D. Kejian,W. Ming, Ceramics International Volume 39, Issue 6 (August 2013) Pages 6363–6367.

DOI: 10.1016/j.ceramint.2013.01.062

Google Scholar

[11] M. Kumar, T.K. Seshagiri, R.M. Kadam, S.V. Godbole, Materials Research Bulletin 46 (2011) 1359–1365.

Google Scholar

[12] G. Blasse, A. Bril, J. de Vries, Journal Inorganic Nuclear Chemical 31 (1969) 568.

Google Scholar

[13] H. Liang, Y. Tao, W. Chen, X. Ju, S. Wang, Q. Su, Journal of Physics and Chemistry of Solids 65 (2004) 1071–1076.

Google Scholar

[14] Y. Komatsu, A. Komeno, K. Toda, K. Uematsu, M. Sato, Journal of Alloys and Compounds 408–412 (2006) 903–906.

DOI: 10.1016/j.jallcom.2005.01.098

Google Scholar

[15] Y. Shi, J. Liang, H. Zhang, Q. Liu, X. Chen, J. Yang, W. Zhuang, G. Rao, Journal of Solid State Chemistry 135 (1998) 43-51.

Google Scholar

[16] R.M. Kadam, T.K. Seshagiri, V. Natarajan, S.V. Godbole, Nuclear Instruments And Methods In Physics Research B 266 (2008) 5137–5143.

Google Scholar

[17] F. Xiao, Y.N. Xue, Y.X. Pan, Q.Y. Zhang, Spectrochimica Acta Part A 77 (2010) 638–642.

Google Scholar

[18] R.D. Shannon, Acta Crystallogr. A 32 (1976) 751–767.

Google Scholar

[19] M. MingXing, Z. DaChuan, Z. Cong, H. Tao, T. MingJing, Science China Physics, Mechanics & Astronomy (October 2011) Vol. 54 No. 10: 1783–1786.

Google Scholar

[20] A. Choubey, S.K. Sharma, S.P. Lochab, T. Shripathi, Physica B 406 (2011) 4483–4488.

DOI: 10.1016/j.physb.2011.09.012

Google Scholar

[21] Y. Yonesaki And C. Matsuda, Journal Of Solid State Chemistry 184 (2011) 3247–3252.

Google Scholar

[22] L. Yu, Nanotechnology Science and Technology, Nova Science Publishers, Inc (2011).

Google Scholar

[23] B. K. Grandhe, V. R. Bandi, K. Jang, Sang-Su Kim, Dong-Soo Shin, Yong-Ill Lee, Jae-Min Lim, Taekwon Song, Journal Of Alloys And Compounds 509 (2011) 7937– 7942.

DOI: 10.1016/j.jallcom.2011.05.044

Google Scholar

[24] Yong-Kwang Kim, S. Choi, Ha-Kyun Jung, Journal of Luminescence 130 (2010) 60–64.

Google Scholar

[25] A. Karthikeyani, R. Jagannathan, Journal of Luminescence 86 (2000) 79-85.

Google Scholar

[26] K. Sakasai, M. Katagiri, K. Toh, H. Takahashi, M. Nakazawa, and Y. Kondo, Japan Ministry of Education, Culture, Sports, Science and Technology (2002).

Google Scholar

[27] H. Hao-Yang, X. Hai-Ping, H. Jian-Xu, Z. Yue-Pin, J. Hao-Chuan, C. Hong-Bing, Chin. Phys. B Vol. 22, No. 2 (2013) 027804.

Google Scholar

[28] Y. Li, H. Li, B. Liu, J. Zhang, Z. Zhao, Z. Yang, Y. Wen, Y. Wang, Journal Of Physics And Chemistry Of Solids 74 (2013) 175–180.

Google Scholar

[29] H. Yu, D. Deng, Y. Li, S. Xu, Y. Li, C. Yu, Y. Ding, H. Lu, H. Yin, Q. Nie, Optics Communications 289 (2013) 103–108.

DOI: 10.1016/j.optcom.2012.09.069

Google Scholar

[30] C.H. Huang, T.M. Chen, InorganicChemistry 50 (2011) 5725.

Google Scholar

[31] H. Zeng, Y. Yang, Z. Lin, X. Liang, S. Yuan, G. Chen, L. Sun, Journal Of Non-Crystalline Solids 357 (2011) 2328–2331.

Google Scholar

[32] I.M. Nagpure, Subhajit Saha, S. J. Dhoble, Journal Of Luminescence 129 (2009) 898–905.

Google Scholar

[33] S. Choi, Y. J. Yun, Ha-Kyun Jung, Materials Letters 75 (2012) 186–188.

Google Scholar

[34] S. Feilong, Z. Junwu, Journal Of Rare Earths, Vol. 29, No. 4, Apr. 2011, P. 326.

Google Scholar