Theoretical Studies on Optical Phonon and Surface Phonon Polariton of Wurtzite AlInN Alloys

Article Preview

Abstract:

The lattice vibrational properties of wurtzite ternary mixed crystal aluminium indium nitride (AlxIn1-xN) are investigated thoroughly using modified random element iso-displacement (MREI) model and Born-Huang procedure. MREI model, which considers the nearest neighbour interactions, is used to predict the composition dependence of longitudinal and transverse optical phonon frequencies. For AlxIn1-xN alloy, oscillator strength of its weak mode is sufficiently significant for composition range of 0 < x < 0.4. As a result, AlxIn1-xN alloy is deduced to exhibit mixed-mode behaviour. Finally, the calculated dielectric functions for the entire composition range (0 < x < 1) are used to simulate the surface phonon polariton characteristics of the AlxIn1-xN alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

565-570

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wu, When Group III Nitride go infrared: New properties and perspectives, J. Appl. Phys., 106 (2009) 011101.

Google Scholar

[2] S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, 1997, p.1.

Google Scholar

[3] D.L. Mills and E. Burstein, Polaritons: the electromagnetic modes of media, Reports on Progress in Physics 37 (1974) 817.

DOI: 10.1088/0034-4885/37/7/001

Google Scholar

[4] A.J. Huber, N. Ocelic, and R. Hillenbrand, Local excitation and interference of surface phonon polaritons studied by near field infrared microscopy, J. Microscopy 229 (2008) 389.

DOI: 10.1111/j.1365-2818.2008.01917.x

Google Scholar

[5] V.M. Naik, W.H. Weber, D. Uy, D. Haddad, R. Naik, Y.V. Danylyuk, M.J. Lukitsch, G.W. Auner, and L. Rimai, Ultraviolet and visible resonance-enhanced Raman scattering in epitaxial Al1-xInxN thin films, Appl. Phys. Lett. 79 (2001) (2019).

DOI: 10.1063/1.1404402

Google Scholar

[6] A. Kasic, M. Schubert, J. Off, and F. Scholz, Strain and composition dependence of the E1 (TO) mode in hexagonal Al1-xInxN thin films, Appl. Phys. Lett. 78 (2001) 1526.

DOI: 10.1063/1.1355010

Google Scholar

[7] T.T. Kang, A. Hashimoto, and A. Yamamoto, Raman scattering of indium-rich AlxIn1− N: Unexpected two-mode behaviour of A1 (LO), Phys. Rev. B 79 (2009) 033301.

Google Scholar

[8] L.F. Jiang, J.F. Kong, W.Z. Shen, and Q.X. Guo, Temperature dependence of Raman scattering in AlInN, J. Appl. Phys. 109 (2011) 113514.

DOI: 10.1063/1.3594697

Google Scholar

[9] H. Grille, C.H. Schnittler, and F. Bechstedt, Phonons in ternary group-III nitride alloys, Phys. Rev B 61 (2000) 6091.

DOI: 10.1103/physrevb.61.6091

Google Scholar

[10] P.K. Ooi, S.C. Lee, S. S Ng, Z. Hassan, and H. A. Hassan, Theoretical studies of surface phonon polariton in wurtzite AlInN ternary alloy, Thin Solid Films 519 (2011) 5481.

DOI: 10.1016/j.tsf.2011.03.020

Google Scholar

[11] L. Genzel, T.P. Martin, and C.H. Perry, Model for Long‐Wavelength Optical‐Phonon Modes of Mixed Crystals, Phys. Status Solidi B 62 (1974) 83.

DOI: 10.1002/pssb.2220620108

Google Scholar

[12] S. Adachi, Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors, Wiley. com, 2009, p.99.

Google Scholar

[13] J. Bao and X.X. Liang, Bulk and surface phonon–polaritons in ternary mixed crystals, J. Phys. Cond. Matter 18 (2006) 8229.

DOI: 10.1088/0953-8984/18/35/010

Google Scholar

[14] I.F. Chang and S.S. Mitra, Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals, Phys. Rev. 172 (1968) 924.

DOI: 10.1103/physrev.172.924

Google Scholar

[15] H.W. Verleur and A.S. Barker Jr, Infrared Lattice Vibrations in GaAsyP1-y Alloys, Phys. Rev. 149 (1966) 715.

Google Scholar

[16] A. K. Harman, S. Ninomiya, and S. Adachi, Optical constants of sapphire (α‐Al2O3) single crystals, J. Appl. Phys. 76 (1994) 8032.

DOI: 10.1063/1.357922

Google Scholar

[17] V. Y. Davydov, V.V. Emtsev, I.N. Goncharuk, A.N. Smirnov, V.D. Petrikov, V.V. Mamutin, V. A Vekshin, S.V. Ivanov, M.B. Smirnov, and T. Inushima, Experimental and theoretical studies of phonons in hexagonal InN, Appl. Phys. Lett. 75 (1999) 3297.

DOI: 10.1063/1.125330

Google Scholar

[18] C. Persson, R. Ahuja, A. Ferreira da Silva, and B. Johansson, First-principle calculations of optical properties of wurtzite AlN and GaN, J. Cryst. Growth 231 (2001) 407.

DOI: 10.1016/s0022-0248(01)01471-3

Google Scholar

[19] B. Abbar, B. Bouhafs, H. Aourag, G. Nouet, and P. Ruterana, First‐Principles Calculations of Optical Properties of AlN, GaN, and InN Compounds under Hydrostatic Pressure, Phys. Status Solidi B 228 (2001) 457.

DOI: 10.1002/1521-3951(200111)228:2<457::aid-pssb457>3.0.co;2-6

Google Scholar

[20] F. Gervais and B. Piriou, Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity, J. Phys. C: Solid State Phys. 7 (1974) 2374.

DOI: 10.1088/0022-3719/7/13/017

Google Scholar

[21] S.C. Lee, S.S. Ng, N.H. Al-Hardan, M. J Abdullah, Z. Hassan, and H. A. Hassan, Studies of surface and interface phonon polariton characteristics of wurtzite ZnO thin film on wurtzite 6H-SiC substrate by p-polarized infrared attenuated total reflection spectroscopy, Thin Solid Films 519 (2011).

DOI: 10.1016/j.tsf.2011.01.271

Google Scholar

[22] D.L. Mills and A.A. Maradudin, Properties of surface polaritons in layered structures, Phys. Rev. Lett. 31 (1973) 372.

DOI: 10.1103/physrevlett.31.372

Google Scholar

[23] PIKE Technologies, Inc., ATR: Theory and Application (PIKE Technologies, Madison, 2010).

Google Scholar