[1]
K. Nagase, Y. Zhang, Y. Kodama, J. Kakuta, Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu 2 O, J. Catal. 187 (1999) 123–130.
DOI: 10.1006/jcat.1999.2611
Google Scholar
[2]
M. Frietsch, F. Zudock, J. Goschnick, M. Bruns, CuO catalytic membrane as selectivity trimmer for metal oxide gas sensors, Sens. Actuat. B 65 (2000) 379–381.
DOI: 10.1016/s0925-4005(99)00353-6
Google Scholar
[3]
P.C. Dai, H.A. Mook, G. Aeppli, S.M. Hayden, F. Dogan, Resonance as a measure of pairing correlations in the high-T c superconductor YBa 2 Cu 3 O 6.6 , Nature 406 (2000) 965–968.
DOI: 10.1038/35023094
Google Scholar
[4]
W.-T. Yao, S.-H. Yu, Y. Zhou, J. Jiang, Q.-S. Wu, L. Zhang, J. Jiang, Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu 2 O, and Cu nanoparticles by a solid–liquid phase arc discharge process, J. Phys. Chem. B 109 (2005) 14011.
DOI: 10.1021/jp0517605
Google Scholar
[5]
Y.-K. Su, C.-M. Shen, H.-T. Yang, H.-L. Li, H.-J. Gao, Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route, Trans. Nonferrous Met. Soc. China 17 (2007) 783.
DOI: 10.1016/s1003-6326(07)60174-5
Google Scholar
[6]
J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan CuO nanowires synthesized by thermal oxidation route,, J. Alloys Compd. 454 (2008) 268.
DOI: 10.1016/j.jallcom.2006.12.032
Google Scholar
[7]
Y. Liu, Y. Chu, M. Li, L. Li, L. Dong, In situ synthesis and assembly of copper oxide nanocrystals on copper foil via amild hydrothermal process,J. Mater. Chem. 16 (2006) 192.
DOI: 10.1039/b512481f
Google Scholar
[8]
M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies, Catalysis Commun. 10 (2008) 11.
DOI: 10.1016/j.catcom.2008.07.022
Google Scholar
[9]
J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu, Synthesis of flower-like CuO nanostructures via a simple hydrolysis route,Materials Letters (2007), 5236–5238
DOI: 10.1016/j.matlet.2007.04.037
Google Scholar
[10]
Liu Y, Chu Y, Zhuo Y, Li M, Li L, Dong L. Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils. Cryst Growth Des (2007), 467-70.
DOI: 10.1021/cg060480r
Google Scholar
[11]
Vaseem M, Umar A, Kim SH, Hahn Y-B. Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties. L Phys Chem C (2008), 112:5729-35.
DOI: 10.1021/jp710358j
Google Scholar
[12]
X. Zhang, G. Wang, X. Liu, J. Wu, M. Li, J. Gu, et al. Different CuO nanostructures: Synthesis, characterization and applications for glucose sensors. J Phys Chem C (2008), 112:16845-9
DOI: 10.1021/jp806985k
Google Scholar
[13]
R. Kumar, R. Elgamiel, Y. Diamant, A. Gedanken, J. Norwig. Sonochemical preparation effect on crystal growth of copper oxide. Langmuir (2001),17:1406-10.
DOI: 10.1021/la001331s
Google Scholar
[14]
Y. Li, Y. Wei, G. Shi, Y. Xian, L. Jin, Electroanalysis 23 (2011) 497–502.
Google Scholar
[15]
W.Z. Jia, M. Guo, Z. Zheng, T. Yu, Y. Wang, E.G. Rodriguez, Y. Lei, Electroanalysis 20 (2008) 2153–2157.
Google Scholar
[16]
E. Reitz, W.Z. Jia, M. Gentile, Y. Wang, Y. Lei, Electroanalysis 20 (2008) 2482-2486.
DOI: 10.1002/elan.200804327
Google Scholar
[17]
Z.J. Zhuang, X.D. Su, H.Y. Yuan, Q. Sun, D. Xiao, M.M.F. Choi, Analyst 133 (2008) 126–132.
Google Scholar
[18]
X.J. Zhang, G.F. Wang, W. Zhang, N.J. Hu, H.Q. Wu, B. Fang, J. Phys. Chem. C 112 (2008) 8856–8862.
Google Scholar
[19]
X.J. Zhang, A.X. Gu, G.F. Wang, Y. Wei, W. Wang, H.Q. Wu, B. Fang, Cryst. Eng. Commun. 12 (2010) 1120–1126.
Google Scholar
[20]
J. Tamaki, et al., Effect of micro-gap electrode on sensing properties to dilute chlorine gas of indium oxide thin film microsensors. Sensors and Actuators B: Chemical 2006. 117(2): pp.353-358.
DOI: 10.1016/j.snb.2005.11.005
Google Scholar