Toxicity of SWCNT Synthesized from Fermented Tapioca on SH-SY5Y Cells

Article Preview

Abstract:

The unique physical properties and strength of carbon nanotube (CNT) lend to its wide application in many fields as diverse engineering, physics and biomedicine. Biomedicine, the toxicity of CNTs was cause for concern on the application as a delivery tool for therapeutic proteins, peptides and genes in the treatment of cancer and neurodegeneration. CNTs were reported to exert adverse effects on normal neuronal function, probably due accumulation in the brain, leading to brain damage. Thus, toxicity tests of CNTs on cells would be relevant in determining potential side effects and dosage. This study was set out to evaluate the toxicity of SWCNTs derived from fermented tapioca on SH-SY5Y cells. Fermented tapioca, was a well known Malaysian local food, and was an excellent precursor for SWCNT synthesis. The raw synthesized SWCNTs were directly used to study the effect on SH-SY5Y cells. Cytotoxicity and neurotoxicity test were performed. The neurotoxicity test results showed higher cell viability compared to the cytotoxicity test. Cell viability for neurotoxicity test was above 50 % for CNT concentration ranges of 250 μg/ml and below. However cell viability decreased markedly at 500 μg/ml. The percentage of cell viability was high at 50 μg/ml and below for the first 24 h of treatment but longer treatment duration resulted in significant decrease in cell viability for all concentrations above 10 μg/ml. These findings demonstrated that CNTs were safe when used at concentration less than 10 μg/ml.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-375

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] R. Kumar, R. S. Tiwari, and O. N. Srivastava, Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil, Nanoscale Research Letters, 6 (2011) 1-6.

DOI: 10.1186/1556-276x-6-92

Google Scholar

[3] A. B. Suriani, A. Azira, S. F. Nik., R. M. Nor, and M. Rusop, Synthesis of vertically aligned carbon nanotubes using natural palm oil as carbon precursor, Materials Letters, 63 (2009) 2704-2706.

DOI: 10.1016/j.matlet.2009.09.048

Google Scholar

[4] K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, and A. Lucas, Fe-catalyzed carbon nanotube formation, Carbon, 34 (1996) 1249-1257.

DOI: 10.1016/0008-6223(96)00074-7

Google Scholar

[5] R. Sen, A. Govindaraj, and C. Rao, Carbon nanotubes by the metallocene route, Chemical physics letters, 267 (1997) 276-280.

DOI: 10.1016/s0009-2614(97)00080-8

Google Scholar

[6] R. Bonadiman, M. D. Lima, M. J. De Andrade, and C. Bergmann, Production of single and multi-walled carbon nanotubes using natural gas as a precursor compound, Journal of materials science, 41 (2006) 7288-7295.

DOI: 10.1007/s10853-006-0938-2

Google Scholar

[7] M. Wienecke, M. C. Bunescu, K. Deistung, P. Fedtke, and E. Borchartd, MWCNT coatings obtained by thermal CVD using ethanol decomposition, Carbon, 44 (2006) 718-723.

DOI: 10.1016/j.carbon.2005.09.020

Google Scholar

[8] S. Paul, and S. Samdarshi, A green precursor for carbon nanotube synthesis, New Carbon Material, 26 (2011) 85-88.

DOI: 10.1016/s1872-5805(11)60068-1

Google Scholar

[9] S. F. Nik, N. F. A. Zainal, A. Azira, F. Mohamed, S. Abdullah, A. Z. Ahmed, and M. Rusop, Functionality of inoculums in fermented glutinous rice for the preparation of carbon nanotubes, Solid State Science and Technology, 18 (2010) 330-336.

DOI: 10.4028/www.scientific.net/amr.667.277

Google Scholar

[10] M. J. A. Marcon, M. A. Vieira, K. Santos, K. N. Simas, R. M. C. Amboni, and E. R. Amante, The effect of fermentation on cassava starch microstructure, Journal of Food Process Engineering, 29 (2006) 362-372.

DOI: 10.1111/j.1745-4530.2006.00073.x

Google Scholar

[11] S. R. Couto and M. A. Sanroman, Application of solid-state fermentation to food industry- A review, Journal of Food Engineering, 76 (2006) 291-302.

DOI: 10.1016/j.jfoodeng.2005.05.022

Google Scholar

[12] R. Misra, S. Acharya, and S. K. Sahoo, Cancer nanotechnology: application of nanotechnology in Cancer therapy, Drug Discovery Today. 15 (2010) 842-850.

DOI: 10.1016/j.drudis.2010.08.006

Google Scholar

[13] M. Wang, and M. Thanou, Targeting nanoparticles to cancer, Pharmacological Research, 62 (2010) 90-99.

Google Scholar

[14] A. Shvedova, V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, and P. Baron, Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, Journal of Toxicology and Environmental Health Part A, 66 (2003) 1909-1926.

DOI: 10.1080/713853956

Google Scholar

[15] N. A. Monteiro-Riviere, R. J. Nemanich, A. O. Inman, Y. Y. Wang, and J. E. Riviere, Multi-walled Carbon nanotube interactions with human epidermal keratinocytes, Toxicology Letters, 155 (2005) 377-384.

DOI: 10.1016/j.toxlet.2004.11.004

Google Scholar

[16] W. Ke, K. Shao, R. Huang, L. Han, Y. Liu, J. Li, Y. Kuang, L. Ye, J. Lou, and C. Jiang, Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol- modified polyamidoamine dendrimer, Biomaterials, 30 (2009) 6976-6985.

DOI: 10.1016/j.biomaterials.2009.08.049

Google Scholar

[17] C. Lin, B. Fugetsu, Y. Su, and F. Watari, Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells, Journal of Hazardous Materials, 170 (2009) 578-583.

DOI: 10.1016/j.jhazmat.2009.05.025

Google Scholar

[18] D. Cui, F. Tian, C. S. Ozkan, M. Wang, and H. Gao, Effect of single wall carbon nanotubes on human HEK293 cells, Toxicology Letters, 155 (2005) 73-85.

DOI: 10.1016/j.toxlet.2004.08.015

Google Scholar

[19] J. Wang, P. Sun, Y. Bao, J. Liu, and L. An, Cytotoxicity of single-walled carbon nanotubes on PC12 cells, Toxicology In Vitro, 25 (2011) 242-250.

DOI: 10.1016/j.tiv.2010.11.010

Google Scholar

[20] L. Belyanskaya, S. Weigel, C. Hirsch, U. Tobler, H. F. Krug, and P. Wick, Effects of carbon nanotubes on primary neurons and glial cells, Neurotoxicology, 30 (2009) 702-711.

DOI: 10.1016/j.neuro.2009.05.005

Google Scholar

[21] S. R. Avancini, G. L. Faccin, M. A. Vieira, A. A. Rovaris, R. Podesta, R. Tramonte, N. M. de Sauza, and E. R. Amante, Cassava starch fermentation wastewater: characterization and preliminary toxicological studies, Food and Chemical Toxicology, 45 (2007) 2273-2278.

DOI: 10.1016/j.fct.2007.06.006

Google Scholar

[22] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, 409 (2005) 47-99.

DOI: 10.1016/j.physrep.2004.10.006

Google Scholar

[23] C. M. Chen, M. Chen, F. C. Leu, S. Y. Hsu, S. C. Wang, S. C. Shi, and C. F. Chen, Purification of multi-walled carbon nanotubes by microwave digestion method, 13 (2004) 1182-1186.

DOI: 10.1016/j.diamond.2003.11.016

Google Scholar

[24] H. Li, N. Zhao, C. He, C. Shi, X. Du, and J. Li, Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane, Materials Science and Engineering, 473 (2008) 355-359.

DOI: 10.1016/j.msea.2007.04.003

Google Scholar

[25] H. L. Karlsson, J. Gustafsson, P. Cronholm, and L. Möller, Size-dependent toxicity of metal oxide particles-a comparison between nano-and micrometer size, Toxicology letters, 188 (2009) 112-118.

DOI: 10.1016/j.toxlet.2009.03.014

Google Scholar

[26] M. Haussler, N. Sidell, M. Kelly, C. Donaldson, A. Altman, and D. Mangelsdorf, Specific high-affinity binding and biologic action of retinoic acid in human neuroblastoma cell lines, Proceeding of the National Academy of Science of the United States of America, 80 (1983) 5525-5529.

DOI: 10.1073/pnas.80.18.5525

Google Scholar

[27] R. J. Scheibe, D. D. Ginty, and J. A. Wagner, Retinoic acid stimulates the differentiation of PC12 cells that are deficient in cAMP-dpendent protein kinase, 113 (1991) 1173-1182.

DOI: 10.1083/jcb.113.5.1173

Google Scholar