Structural Properties of Stannic Oxide Coated Aluminium-Doped Zinc Oxide Nanorods

Article Preview

Abstract:

Aluminium (Al) - doped zinc oxide (ZnO) nanorods was deposited using sol-gel immersion method. To study the effect of stannic oxide coating (SnO2) on the structural properties of the ZnO nanorods, SnO2 with different layers were deposited on the top of ZnO nanorods, from 1 to 5 layers. The structural properties of the samples have been characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy and x-ray diffraction (XRD). The analyses showed that by increasing the deposited layer, the surface roughness of the samples reduced and also reduced the porosity of the surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

476-480

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. R. Ohodnicki, S. Natesakhawat, J. P. Baltrus, B. Howard, and T. D. Brown, Characterization of optical, chemical, and structural changes upon reduction of sol–gel deposited SnO2 thin films for optical gas sensing at high temperatures, Thin Solid Films, vol. 520, no. 19, p.6243–6249, Jul. (2012).

DOI: 10.1016/j.tsf.2012.05.023

Google Scholar

[2] R. Rella and A. Serra, CO sensing properties of SnO 2 thin films prepared by the sol-gel process, vol. 304, p.339–343, (1997).

DOI: 10.1016/s0040-6090(97)00204-6

Google Scholar

[3] G. Turgut and E. Sönmez, Synthesis and characterization of Mo doped SnO2 thin films with spray pyrolysis, Superlattices Microstruct., vol. 69, p.175–186, May (2014).

DOI: 10.1016/j.spmi.2014.02.009

Google Scholar

[4] S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, and J. Zhao, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method, Appl. Surf. Sci., vol. 258, no. 7, p.3255–3259, Jan. (2012).

DOI: 10.1016/j.apsusc.2011.11.077

Google Scholar

[5] S. S. Lekshmy, G. P. Daniel, and K. Joy, Microstructure and physical properties of sol gel derived SnO2: Sb thin films for optoelectronic applications, Appl. Surf. Sci., vol. 274, p.95–100, Jun. (2013).

DOI: 10.1016/j.apsusc.2013.02.109

Google Scholar

[6] S. F. Bamsaoud, S. B. Rane, R. N. Karekar, and R. C. Aiyer, SnO2 film with bimodal distribution of nano-particles for low concentration hydrogen sensor: Effect of firing temperature on sensing properties, Mater. Chem. Phys., vol. 133, no. 2–3, p.681–687, Apr. (2012).

DOI: 10.1016/j.matchemphys.2012.01.052

Google Scholar

[7] T. Tharsika, a. S. M. . Haseeb, S. a. Akbar, and M. F. M. Sabri, Co-synthesis of ZnO/SnO2 mixed nanowires via a single-step carbothermal reduction method, Ceram. Int., vol. 40, no. 3, p.5039–5042, Apr. (2014).

DOI: 10.1016/j.ceramint.2013.08.142

Google Scholar

[8] M. H. Habibi and M. Mardani, Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B., Spectrochim. Acta. A. Mol. Biomol. Spectrosc., vol. 137C, p.785–789, Sep. (2014).

DOI: 10.1016/j.saa.2014.09.013

Google Scholar

[9] G. D. Khuspe, R. D. Sakhare, S. T. Navale, M. a. Chougule, Y. D. Kolekar, R. N. Mulik, R. C. Pawar, C. S. Lee, and V. B. Patil, Nanostructured SnO2 thin films for NO2 gas sensing applications, Ceram. Int., vol. 39, no. 8, p.8673–8679, Dec. (2013).

DOI: 10.1016/j.ceramint.2013.04.047

Google Scholar