Vertical Growth of ZnO Nanocone Arrays on Polycarbonate Substrate by Voltage-Assisted Chemical Bath Deposition

Article Preview

Abstract:

In this study, ZnO nanocone arrays were grown on polycarbonate (PC) substrate using a voltage-assisted chemical bath deposition in a Zn (NO3)2 aqueous solution. To optimize the properties of ZnO nanorods grown on the PC substrate, the effects of current density were examined with respect to the morphological, structural, and photoluminescence properties of the nanorods. Field emission scanning electron microscopy and photoluminescence spectrum confirmed that ZnO nanorod arrays were vertically aligned with highly c-axis oriented, and the sample treated at 0.05 mA had the best crystallization among all samples. Based on the combined results of this study, the vertical ZnO nanocons produced on the PC substrate hold great promise for use in the development of flexible solar cell and other applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

495-499

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Eswar, J. Rouhi, H. Husairi, M. Rusop, S. Abdullah, Annealing heat treatment of ZnO nanoparticles grown on porous Si substrate using spin-coating method, Advances in Materials Science and Engineering, 2014 (2014) 6.

DOI: 10.1155/2014/796759

Google Scholar

[2] T.P. Chou, Q. Zhang, G.E. Fryxell, G. Cao, Hierarchically Structured ZnO Film for Dye‐Sensitized Solar Cells with Enhanced Energy Conversion Efficiency, Advanced Materials, 19 (2007) 2588-2592.

DOI: 10.1002/adma.200602927

Google Scholar

[3] X. Wang, C.J. Summers, Z.L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nano Letters, 4 (2004) 423-426.

DOI: 10.1021/nl035102c

Google Scholar

[4] C. -Y. Lu, S. -J. Chang, S. -P. Chang, C. -T. Lee, C. -F. Kuo, H. -M. Chang, Y. Chiou, C. -L. Hsu, I. Chen, Ultraviolet photodetectors with ZnO nanowires prepared on ZnO: Ga/glass templates, Applied Physics Letters, 89 (2006) 153101-153103.

DOI: 10.1063/1.2360219

Google Scholar

[5] S. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures, Journal of Chemical Sciences, 122 (2010) 57-62.

DOI: 10.1007/s12039-010-0006-y

Google Scholar

[6] J. Rouhi, M. Alimanesh, S. Mahmud, R.A. Dalvand, C.H.R. Ooi, M. Rusop, Optical properties of well-aligned ZnO nanostructure arrays synthesized by an electric field-assisted aqueous solution method, Ceramics International, 40 (2014) 11193–11198.

DOI: 10.1016/j.ceramint.2014.03.157

Google Scholar

[7] F. Wang, X. Qin, Z. Guo, Y. Meng, L. Yang, Y. Ming, Hydrothermal synthesis of dumbbell-shaped ZnO microstructures, Ceramics International, 39 (2013) 8969-8973.

DOI: 10.1016/j.ceramint.2013.04.096

Google Scholar

[8] J. Rouhi, S. Mahmud, S.D. Hutagalung, S. Kakooei, Optimisation of nanooxide mask fabricated by atomic force microscopy nanolithography: a response surface methodology application, Micro & Nano Letters, IET, 7 (2012) 325-328.

DOI: 10.1049/mnl.2011.0658

Google Scholar

[9] M. Husairi, J. Rouhi, K. Alvin, Z. Atikah, M. Rusop, S. Abdullah, Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique, Semiconductor Science and Technology, 29 (2014).

DOI: 10.1088/0268-1242/29/7/075015

Google Scholar

[10] J. Rouhi, S.D. Hutagalung, S. Kakooei, S. Mahmud, Fabrication of nanogap electrodes via nano-oxidation mask by scanning probe microscopy nanolithography, Journal of Micro/Nanolithography, MEMS, and MOEMS, 10 (2011) 043002-043002-043003.

DOI: 10.1117/1.3643480

Google Scholar

[11] K. Eswar, J. Rouhi, F. Husairi, R. Dalvand, S.A. Alrokayan, H.A. Khan, M. Rusop Mahmood, S. Abdullah, Hydrothermal growth of flower-like ZnO nanostructures on porous silicon substrate, Journal of Molecular Structure, (2014).

DOI: 10.1016/j.molstruc.2014.05.067

Google Scholar

[12] H. Guo, J. Zhou, Z. Lin, ZnO nanorod light-emitting diodes fabricated by electrochemical approaches, Electrochemistry Communications, 10 (2008) 146-150.

DOI: 10.1016/j.elecom.2007.11.010

Google Scholar

[13] M. Wong, A. Berenov, X. Qi, M. Kappers, Z. Barber, B. Illy, Z. Lockman, M. Ryan, J. MacManus-Driscoll, Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil, Nanotechnology, 14 (2003) 968.

DOI: 10.1088/0957-4484/14/9/306

Google Scholar

[14] J. Rouhi, S. Mahmud, S.D. Hutagalung, N. Naderi, S. Kakooei, M.J. Abdullah, Controlling the shape and gap width of silicon electrodes using local anodic oxidation and anisotropic TMAH wet etching, Semiconductor Science and Technology, 27 (2012).

DOI: 10.1088/0268-1242/27/6/065001

Google Scholar

[15] N. Naderi, M. Hashim, J. Rouhi, H. Mahmodi, Enhanced optical and electrical stability of thermally carbonized porous silicon, Materials Science in Semiconductor Processing, 16 (2013) 542-546.

DOI: 10.1016/j.mssp.2012.09.010

Google Scholar

[16] M. Alimanesh, J. Rouhi, N. Zainal, S. Kakooei, Z. Hassan, Growth of Vertically Aligned ZnO Nanorods Arrays by Hydrothermal Method, Advanced Materials Research, 795 (2013) 616-619.

DOI: 10.4028/www.scientific.net/amr.795.616

Google Scholar

[17] J. Rouhi, S. Mahmud, S. Hutagalung, N. Naderi, Field emission in lateral silicon diode fabricated by atomic force microscopy lithography, Electronics letters, 48 (2012) 712-714.

DOI: 10.1049/el.2012.1020

Google Scholar

[18] A. B Djurisic, X. Y Chen, Y. H Leung, Recent progress in hydrothermal synthesis of zinc oxide nanomaterials, Recent patents on nanotechnology, 6 (2012) 124-134.

DOI: 10.2174/187221012800270180

Google Scholar

[19] J. Rouhi, M.R. Mahmood, S. Mahmud, R. Dalvand, The effect of emitter geometry on lateral field emission diodes fabricated by AFM-based electrochemical nanolithography, Journal of Solid State Electrochemistry, 18 (2014) 1695-1700.

DOI: 10.1007/s10008-014-2403-5

Google Scholar

[20] N. Naderi, M. Hashim, K. Saron, J. Rouhi, Enhanced optical performance of electrochemically etched porous silicon carbide, Semiconductor Science and Technology, 28 (2013) 025011.

DOI: 10.1088/0268-1242/28/2/025011

Google Scholar