A Review on Graphene Evidenced by Raman Spectroscopy

Article Preview

Abstract:

The unsurpassed and exceptional properties of graphene (Gr) have prompted significant progress toward Gr-based applications, and have furthermore unleashed a host of complimentary two-dimensional materials that provide new, and emerging technologies synergistic with an already well-established Gr science. The Raman spectroscopy reveals both basic and advance features. It emerged as an important optical and structural characterization tool, following in the footsteps of related form of carbon. Till date, no comprehensive descriptions of Raman spectroscopy on Gr characterization have been published yet. This is to say that, no review can possibly complete. We have presented an extensive overview of the Raman spectroscopy, filled-up this gap and discussed the theoretical background associated with the Gr and other carbon-based materials, and some thoughts about the future of this field are highlighted. Thus, it would be used as a reference guide for the utilization of Raman spectroscopy to investigate the various features of Gr and carbon-based materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

509-513

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Miró, M. Audiffred, T. Heine. An atlas of two-dimensional materials. Chemical Society Reviews. 43 (2014) 6537-6554.

DOI: 10.1039/c4cs00102h

Google Scholar

[2] Z.A. Piazza, H. -S. Hu, W. -L. Li et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nature Communications 5 (2014) Art. ID 3113.

DOI: 10.1038/ncomms4113

Google Scholar

[3] A. Kara, H. Enriquez, A.P. Seitsonen et al. A review on silicene - new candidate for electronics. Surface Science Reports 67 (2012) 1–18.

DOI: 10.1016/j.surfrep.2011.10.001

Google Scholar

[4] L. Li et al. Buckled germanene formation on Pt (111). Advanced Materials 26 (2014) 4820–4824.

Google Scholar

[5] Y. Xu, B. Yan, H.J. Zhang et al. Large-gap quantum spin hall insulators in tin films. Physical Review Letters 111 (2013) Art. ID 136804.

DOI: 10.1103/physrevlett.111.136804

Google Scholar

[6] H. Liu et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8 (2014) 4033–4041.

DOI: 10.1021/nn501226z

Google Scholar

[7] P.C. Lin, S. Lin, P.C. Wang, R. Sridhar. Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances 32 (2014) 711-726.

DOI: 10.1016/j.biotechadv.2013.11.006

Google Scholar

[8] C.V. Raman. A new radiation. Indian Journal of Physics 2 (1928) 387-398.

Google Scholar

[9] The Nobel Prize in Physics 1930,. Nobelprize. org. Nobel Media AB 2014. Web. 9 Sep 2014. http: /www. nobelprize. org/nobel_prizes/physics/laureates/1930/. Retrieved from the website by 9th September (2014).

Google Scholar

[10] R. Singh. C.V. Raman and the discovery of the Raman effect. Physics in Perspective 4 (2002) 399-420.

Google Scholar

[11] R.S. Das, Y.K. Agrawal. Raman spectroscopy: Recent advancement, techniques and applications. Vibrational Spectroscopy 57 (2011) 163-176.

DOI: 10.1016/j.vibspec.2011.08.003

Google Scholar

[12] J. Burgdörfer, S. Rotter. Quantum Mechanics. Encyclopedia of Applied Physics. DOI: 10. 1002/3527600434. eap367. pub2.

Google Scholar

[13] A. Einstein. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der Physik 322 (1905) 132-148.

DOI: 10.1002/andp.19053220607

Google Scholar

[14] L.M. Malard, M.A. Pimenta, G. Dresselhaus et al. Raman spectroscopy in graphene. Physics Reports 473 (2009) 51-87.

DOI: 10.1016/j.physrep.2009.02.003

Google Scholar

[15] G. Dovbeshko, O. Fesenko, A. Dementjev et al. Coherent anti-Stoke Raman scattering enhancement of thymine adsorbed on graphene oxide. Nanoscale Research letters 9 (2014) Art. ID 263.

DOI: 10.1186/1556-276x-9-263

Google Scholar

[16] R.P. Vidano, D.B. Fischbach. Observation of Raman band shifting with excitation wavelength for carbon and graphites. Solid State Communications 39 (1981) 341-344.

DOI: 10.1016/0038-1098(81)90686-4

Google Scholar

[17] M. J. Matthews, M. A. Pimenta, G. Dresselhaus et al. Origin of dispersive effects of the Raman D band in carbon materials. Physical Review B 59 (1999) R6585.

DOI: 10.1103/physrevb.59.r6585

Google Scholar

[18] M.S. Shamsudin, M. Mohammad, S.A.M. Zobir et al. Synthesis and nucleation-growth mechanism of almost catalyst-free carbon nanotubes grown from Fe-filled sphere-like graphene-shell surface. Journal of Nanostructure in Chemistry 3 (2013).

DOI: 10.1186/2193-8865-3-13

Google Scholar

[19] L. Stobinski, B. Lesiak, A. Malolepszy et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. Journal of Electron Spectroscopy and Related Phenomena 195 (2014) 145-154.

DOI: 10.1016/j.elspec.2014.07.003

Google Scholar

[20] F. Tuinstra, J.L. Koenig. Characterization of graphite fiber surfaces with Raman spectroscopy. Journal of Composite Materials 4 (1970) 492-499.

DOI: 10.1177/002199837000400405

Google Scholar

[21] D.S. Knight, W.B. White. Characterization of diamond films by Raman spectroscopy. Journal of Materials Research 4 (1989) 385-393.

Google Scholar

[22] L. Cançado. K. Takai. T. Enoki et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Applied Physics Letters 88 (2006) Art. ID 163106.

DOI: 10.1063/1.2196057

Google Scholar

[23] M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus et al. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics 9 (2007) 1271-1291.

Google Scholar

[24] M.S. Shamsudin, S.J. Fishlock, R. Ahmad et al. Fundamentals of two-dimensional crystallographic carbon form and its future directions: A review. Advanced Materials Research 832 (2014) 292-297.

DOI: 10.4028/www.scientific.net/amr.832.292

Google Scholar