Determination of Chemical Species in MDEA – Carbon Dioxide – Water System by Raman Spectroscopy

Article Preview

Abstract:

Alkanolamines based carbon dioxide absorption from flue gases remains the most industrially implemented technique. The effective design of absorbers and associated equipment requires robust thermodynamic and kinetic models thus, instigating research efforts in chemical speciation and characterization of CO2 loaded alkanolamine solutions. In this study, the potential of Raman spectroscopy has been investigated to determine the in situ chemical speciation in MDEA – CO2 – Water system. The Raman spectra have been fitted to thermodynamic values using principal component regression. Results are in good agreement for carbonate, bicarbonate, MDEA and protonated MDEA chemical species.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-266

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. V. Efremov, F. Ariese, and C. Gooijer, Achievements in resonance Raman spectroscopy: Review of a technique with a distinct analytical chemistry potential, Analytica Chimica Acta, vol. 606, pp.119-134, (2008).

DOI: 10.1016/j.aca.2007.11.006

Google Scholar

[2] V. Souchon, M. d. O. Aleixo, O. Delpoux, C. Sagnard, P. Mougin, A. Wender, et al., In situ determination of species distribution in alkanolamine- H2O - CO2 systems by Raman spectroscopy, Energy Procedia, vol. 4, pp.554-561, (2011).

DOI: 10.1016/j.egypro.2011.01.088

Google Scholar

[3] A. R. Davis and B. G. Oliver, A vibrational-spectroscopic study of the species present in the CO2−H2O system, Journal of Solution Chemistry, vol. 1, pp.329-339, (1972).

DOI: 10.1007/bf00715991

Google Scholar

[4] B. G. Oliver and A. R. Davis, Vibrational Spectroscopic Studies of Aqueous Alkali Metal Bicarbonate and Carbonate Solutions, Canadian Journal of Chemistry, vol. 51, pp.698-702, (1973).

DOI: 10.1139/v73-106

Google Scholar

[5] K. Ohno, H. Matsumoto, H. Yoshida, H. Matsuura, T. Iwaki, and T. Suda, Vibrational Spectroscopic and ab Initio Studies on Conformations of the Chemical Species in a Reaction of Aqueous 2-(N, N-Dimethylamino)ethanol Solutions with Carbon Dioxide. Importance of Strong NH+··O Hydrogen Bonding, The Journal of Physical Chemistry A, vol. 102, pp.8056-8062, (1998).

DOI: 10.1021/jp982562z

Google Scholar

[6] K. Ohno, Y. Inoue, H. Yoshida, and H. Matsuura, Reaction of Aqueous 2-(N-Methylamino)ethanol Solutions with Carbon Dioxide. Chemical Species and Their Conformations Studied by Vibrational Spectroscopy and ab Initio Theories, The Journal of Physical Chemistry A, vol. 103, pp.4283-4292, (1999).

DOI: 10.1021/jp984821q

Google Scholar

[7] A. Jahangiri, H. Pahlavanzadeh, and A. Mohammadi, The Modeling of CO2 Removal From a Gas Mixture by 2-amino-2-methyl-1-propanol (AMP) Using the Modified Kent Eisenberg Model, Petroleum Science and Technology, vol. 32, pp.1104-1113, (2014).

DOI: 10.1080/10916466.2011.603010

Google Scholar

[8] J. P. Jakobsen, J. Krane, and H. F. Svendsen, Liquid-phase composition determination in CO2-H2O-alkanolamine systems: An NMR study, Industrial & engineering chemistry research, vol. 44, pp.9894-9903, (2005).

DOI: 10.1021/ie048813+

Google Scholar

[9] K. Varmuza and P. Filzmoser, Introduction to multivariate statistical analysis in chemometrics: CRC press, (2008).

Google Scholar

[10] T. Edwards, G. Maurer, J. Newman, and J. Prausnitz, Vapor‐liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes, AIChE Journal, vol. 24, pp.966-976, (1978).

DOI: 10.1002/aic.690240605

Google Scholar

[11] E. Smith and G. Dent, Modern Raman spectroscopy: a practical approach: John Wiley & Sons, (2005).

Google Scholar

[12] E. Voutsas, A. Vrachnos, and K. Magoulas, Measurement and thermodynamic modeling of the phase equilibrium of aqueous N-methyldiethanolamine solutions, Fluid Phase Equilibria, vol. 224, pp.193-197, (2004).

DOI: 10.1016/j.fluid.2004.05.012

Google Scholar