[1]
A. Babuponnusami, K. Muthukumar K, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering. Vol 2(1), (2014) 5557-572.
DOI: 10.1016/j.jece.2013.10.011
Google Scholar
[2]
S. Yuan, M. Tian, Y. Cui, L. Lin, X. Lu, Treatment of nitrophenols by cathode reduction and electro-Fenton methods, Journal Hazard Matter, 137 (2006) 573–580.
DOI: 10.1016/j.jhazmat.2006.02.069
Google Scholar
[3]
D. E. Shahwar, A. Yasar, S, Yousaf, Solar Assisted Photo Fenton For Cost Effective Degradation Of Textile Effluents In Comparison To AOP, Global NEST Journal, Vol 14- (4), (2012) 477-486.
DOI: 10.30955/gnj.000804
Google Scholar
[4]
S. M. Kim, S. U. Geissen, A. Vogelpohl, Landfill leachate treatment by a photo assisted Fenton reaction, Water Sci. Technol, 35, (1997) 239–248.
DOI: 10.2166/wst.1997.0128
Google Scholar
[5]
O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water treatment, Chem. Rev. 93 (1993) 671–698.
DOI: 10.1021/cr00018a003
Google Scholar
[6]
D. A. H. Hanaor, M. Michelazzi, C. Leonelli, C. C. Sorrell, The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, Journal of the European Ceramic Society, 32 (1) (2012) 235–244.
DOI: 10.1016/j.jeurceramsoc.2011.08.015
Google Scholar
[7]
R. Greenwood, K. Kendall, Selection of Suitable Dispersants for Aqueous and Titania Powders using Acoustophoresis, Journal of the European Ceramic Society 19 (4)(1999) 479–488.
DOI: 10.1016/s0955-2219(98)00208-8
Google Scholar
[8]
P. Shukla, S. Wang, H. Sun, H. M. Ang, M. Tade, Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chemical Engineering Journal, 164, (2010) 255-260.
DOI: 10.1016/j.cej.2010.08.061
Google Scholar
[9]
J. J. Pignatello, E. Oliveros, A. Mackay, Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, Crit. Rev. Env. Sci. Technology 36: 1 (2006).
DOI: 10.1080/10643380500326564
Google Scholar
[10]
R. Dewil, J. Baeyens, E. Neyens, Fenton peroxidation improves the drying performance of waste activated sludge, Journal of Hazardous Materials, 117, (2005) 161-170.
DOI: 10.1016/j.jhazmat.2004.09.025
Google Scholar
[11]
I, Arslan, I.A. Balcioglu, D. W. Bahnemann, Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-Fenton/UV-A and TiO2/UV-A processes, Dyes and Pigments, 47 (2000) 207-218.
DOI: 10.1016/s0143-7208(00)00082-6
Google Scholar
[12]
M. Umar, H. A. Aziz, M. S. Yusoff, Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate, Waste Management. Vol 30-11, (2010) 2113-2121.
DOI: 10.1016/j.wasman.2010.07.003
Google Scholar
[13]
H. C. Yoo, S. H. Cho, S. O. Ko, Modification Of Coagulation And Fenton Oxidation Processes For Cost-Effective Leachate Treatment. Journal of Environmental Science and Health, Part A Vol. 36 (1) (2001).
DOI: 10.1081/ese-100000470
Google Scholar
[14]
C. Di Iaconi, G. Del Moro, M. De Sanctis, S. Rossetti, A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment, Water Research, 44, (2010) 3635-3644.
DOI: 10.1016/j.watres.2010.04.017
Google Scholar
[15]
V. Kavitha, K, Palanivelu, The Role of Ferrous ion in Fenton and Photo Fenton Processes for the Degradation of phenol, Chemosphere, 55, (2004), 1235-43.
DOI: 10.1016/j.chemosphere.2003.12.022
Google Scholar
[16]
J. M. Poyatos, M. M. Munio, M. C. Almeija, J. C. Torres, E. Hontoria, F. Osorio, Advanced Oxidation Processes For Wastewater Treatment; state of the Art, Water Air Soil Pollution 205 (2010) 187-204.
DOI: 10.1007/s11270-009-0065-1
Google Scholar
[17]
C. W. Li, Y.M. Chen, Y. C. Chiou, C. K. Liu, Dye wastewater treated by Fenton process with ferrous ions electrolytically generated from iron-containing sludge, Journal Hazard Matter 1; 144(1-2) (2007) 570.
DOI: 10.1016/j.jhazmat.2006.10.076
Google Scholar
[18]
F. N. Acar, N. Ertugay, N. Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton's oxidation: Kinetic study, Arabian Journal of Chemistry, (2013).
DOI: 10.1016/j.arabjc.2013.02.009
Google Scholar
[19]
S. Papic, D. Vujevic, N. Koprivanac, D. Sinko, Decolorization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes, Journal Hazard Mater, 164 (2009) 1137-1145.
DOI: 10.1016/j.jhazmat.2008.09.008
Google Scholar
[20]
Y. W. Kang, M, J. Cho, K. Y. Hwang, Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Res. 33 (5), (1999) 1247–12.
DOI: 10.1016/s0043-1354(98)00315-7
Google Scholar
[21]
P. K. Malik, S. K. Saha, Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, Separation and Purification Technology, 31(2003) 241-50.
DOI: 10.1016/s1383-5866(02)00200-9
Google Scholar
[22]
E. Neyens, J. Baeyens, A review of classic Fenton's peroxidation as an advanced oxidation technique, Journal of Hazardous Materials 98 (2003) 33-50.
DOI: 10.1016/s0304-3894(02)00282-0
Google Scholar