[1]
D.J. Wedlock, Controlled Particle, Droplet & Bubble Formation, first ed., Butterworth-Heinemann, Oxford, (1994).
Google Scholar
[2]
P. Mougin, G. Clydesdale, R.B. Hammond, K.J. Roberts, Molecular and solid-state modeling of the crystal purity and morphology of e-caprolactam in the presence of synthesis impurities and the imino-tautomeric species caprolactim, J. Phys. Chem. B 107 (2003).
DOI: 10.1021/jp034350u
Google Scholar
[3]
M. Lahav, L. Leiserowitz, The effect of solvent on crystal growth and morphology, Chem. Eng. Sci. 56 (2001) 2245-2253.
DOI: 10.1016/s0009-2509(00)00459-0
Google Scholar
[4]
D. Murnane, C. Marriot, G. Martin, Developing an environmentally benign process for the production of microparticles: amphiphilic crystallization, Eur. J. Pharm. Biopharm. 69 (2008) 72-78.
DOI: 10.1016/j.ejpb.2007.10.014
Google Scholar
[5]
A. Myerson, Handbook of Industrial Crystallization, second ed., Butterworth-Heinemann, Boston (2002).
Google Scholar
[6]
E.A. Moore, The Molecular World: Molecular Modelling and Bonding, first ed., Royal Society of Chemistry, Cambridge, (2002).
Google Scholar
[7]
A. Myerson, Molecular Modelling Application in Crystallization, first ed., Cambridge University Press, Cambridge, (1999).
Google Scholar
[8]
G. Clydesdale, R. Docherty, K.J. Roberts, Habit- a program for predicting the morphology of the molecular crystals, Comp. Phys. Comm. 64 (1991) 311-328.
DOI: 10.1016/0010-4655(91)90040-r
Google Scholar
[9]
K. Roberts, R. Docherty, P. Bennema, L. A. M. J. Jetten, The importance of considering growth-induced conformational change in predicting the morphology of benzophenone, J. Phys. D: App. Phys. 26 (1993) B7-B21.
DOI: 10.1088/0022-3727/26/8b/002
Google Scholar
[10]
G.L. Perlovich, S.V. Kurkov, L.K. R Hansen, A. Bauer-brandl, Thermodynamics of sublimation, crystal lattice energies, and crystal structures of racemates and enantiomers : (+) and (±)-ibuprofen, J. Pharm. Sci 93 (2004) 654-666.
DOI: 10.1002/jps.10586
Google Scholar
[11]
T. Lee, C.S. Kuo, Y.H. Chen, Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening, Pharm. Tech. 30 (2006) 72-92.
Google Scholar
[12]
J. Mullin, Crystallization, fourth ed., Butterworth-Heinemann, Oxford, (2001).
Google Scholar
[13]
H. Cano, N. Gabas, J. P. Canselier, Experimental study on the ibuprofen crystal growth morphology in solution, J. Crys. Growth 224 (2001) 335-341.
DOI: 10.1016/s0022-0248(01)00969-1
Google Scholar
[14]
N. Rasenack, B. W. Müller, Ibuprofen crystals with optimized properties, Int. J. Pharm 245 (2002) 9-24.
Google Scholar
[15]
P.D. Martino, M. Beccerica, E. Joiris, G.F. Palmieri, A. Gayot, S. Martelli, Influence of crystal habit on the compression and densification mechanism of ibuprofen, J. Cryst. Growth 243 (2002) 345-355.
DOI: 10.1016/s0022-0248(02)01523-3
Google Scholar
[16]
N. Shankland, A. J. Florence, P. J. Cox, D. B. Sheen, S. W. Love, N. S. Stewarta, C. C. Wilsond, Crystal morphology of ibuprofen predicted from single-crystal pulsed neutron diffraction data, Chem. Comm. (1996) 855-856.
DOI: 10.1039/cc9960000855
Google Scholar
[17]
H.M. Cuppen, G.M. Day, P. Verwer, H. Meekes, Sensitivity of morphology prediction to the force field: paracetamol as an example, Cryst. Growth & Design 4 (2004) 1341-1349.
DOI: 10.1021/cg049924e
Google Scholar
[18]
G. Han, P.S. Chow, R.B.H. Tan, Precise habit modification of polar dl-alanine crystal by control of supersaturation, Cryst. Growth & Design 11 (2011) 3941-3946.
DOI: 10.1021/cg2005437
Google Scholar
[19]
S. Bordawekar, Z. Kuvadia, P. Dandekar, S. Mukherjee, M.F. Doherty, Interesting morphological behavior of organic salt choline fenofibrate: effect of supersaturation and polymeric impurity, Cryst. Growth & Design 14 (2014) 3800-3812.
DOI: 10.1021/cg500283y
Google Scholar
[20]
G. Clydesdale, K.J. Roberts, G.B. Telfer D.J.W. Grant, Modeling the crystal morphology of α-lactose monohydrate, J. Pharm. Sci. 86 (1997) 135-141.
DOI: 10.1021/js950496w
Google Scholar