[1]
Y. J. Wee, J. N. Kim, and H. W. ryu, Biotechnological Production of Lactic Acid and Its Recent Application, Food Technology and Biotechnology, vol. 44, pp.163-172, (2006).
Google Scholar
[2]
R. P. John, A. G. S, K. M. Nampoothiri, and A. Pandey, Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production, Biotechnology Advances, vol. 27, pp.145-152, (2009).
DOI: 10.1016/j.biotechadv.2008.10.004
Google Scholar
[3]
M. W. Zhizhuang Xiao, Manon Beauchemin, Denis Groleau and Peter C.K. Lau*, Direct fermentation of triticale starch to lactic acid by Rhizopus oryzae, INdustrial Biotechnology, vol. 7, pp.129-135, (2011).
DOI: 10.1089/ind.2011.7.129
Google Scholar
[4]
N. Naranong and D. Poocharoen, Production of L-Lactic Acid from Raw Cassava Starch by Rhizopus oryzae NRRL 395, (2001).
Google Scholar
[5]
A. Ghofar, S. Ogawa, and T. Kokugan, Production of L-lactic acid from fresh cassava roots slurried with tofu liquid waste by Streptococcus bovis, Journal of Bioscience and Bioengineering, vol. 100, pp.606-612, (2005).
DOI: 10.1263/jbb.100.606
Google Scholar
[6]
S. D. Yuwono and S. Hadi, Lactic Acid Production from Fresh Cassava Roots Using Single-Stage Membrane Bioreactor, Modern Applied Science, vol. 6, pp.60-67, (2012).
DOI: 10.5539/mas.v6n1p60
Google Scholar
[7]
H. W. Yen, T. J. Chen, W. C. Pan, and H. J. Wu, Effects of neutralizing agents on lactic acid production by Rhizopus oryzae using sweet potato starch, World Journal of Microbiology and Biotechnology, vol. 26, pp.437-441, (2010).
DOI: 10.1007/s11274-009-0186-0
Google Scholar
[8]
S. Nakano, C. U. Ugwu, and Y. Tokiwa, Efficient production of d-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent, Bioresource Technology, vol. 104, pp.791-794, (2012).
DOI: 10.1016/j.biortech.2011.10.017
Google Scholar
[9]
Y. Y. Linko and P. Javanainen, Simultaneous liquefaction, saccharification, and lactic acid fermentation on barley starch, Enzyme and Microbial Technology, vol. 19, pp.118-123, (1996).
DOI: 10.1016/0141-0229(95)00189-1
Google Scholar
[10]
Y. D. Hang, Direct fermentation of corn to L(+)-lactic acid by Rhizopus oryzae, Biotechnology Letters, vol. 11, pp.299-300, (1989).
DOI: 10.1007/bf01031581
Google Scholar
[11]
Y. D. Hang, H. Hamamci, and E. E. Woodams, Production of L(+)-lactic acid by Rhizopus oryzae immobilized in calcium alginate gels, Biotechnology Letters, vol. 11, pp.119-120, (1989).
DOI: 10.1007/bf01192186
Google Scholar
[12]
N. Charoenkul, D. Uttapap, W. Pathipanawat, and Y. Takeda, Physicochemical characteristics of starches and flours from cassava varieties having different cooked root textures, LWT - Food Science and Technology, vol. 44, pp.1774-1781, (2011).
DOI: 10.1016/j.lwt.2011.03.009
Google Scholar
[13]
F. Hamzah, A. Idris, R. Rashid, and S. J. Ming, Lactic Acid Production from Microwave-Alkali Pre-treated Empty Fruit Bunches Fiber using Rhizopus oryzae Pellet, Journal of Applied Sciences vol. 9, pp.3086-3091, (2009).
DOI: 10.3923/jas.2009.3086.3091
Google Scholar
[14]
Y. Li and X. S. Sun, Preparation and Characterization of Polymer−Inorganic Nanocomposites by In Situ Melt Polycondensation of l-Lactic Acid and Surface-Hydroxylated MgO, Biomacromolecules, vol. 11, pp.1847-1855, 2010/07/12 (2010).
DOI: 10.1021/bm100320q
Google Scholar
[15]
Rafael A Auras, Loong Tak Lim, Susan E M Selke, and H. Tsuji, Infrared and Raman Spectroscopy, in Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Application, ed: John Wiley & Sons, 2010, p.101.
DOI: 10.1002/9780470649848
Google Scholar
[16]
R. Auras, B. Harte, and S. Selke, An Overview of Polylactides as Packaging Materials, Macromolecular Bioscience, vol. 4, pp.835-864, (2004).
DOI: 10.1002/mabi.200400043
Google Scholar
[17]
D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, (2008).
Google Scholar
[18]
D. Garlotta, A Literature Review of Poly(Lactic Acid), Journal of Polymers and the Environment, vol. 9, pp.63-84, (2001).
Google Scholar