[1]
Ahmed, S., et al. Recent Developments in Photocatalytic Degradation of Pesticides and Phenols in Storm and Wastewater effluent in ERE 2010 Conference. 2010. Central Queensland University, Rockhampton, QLD: CSIRO Publishing.
Google Scholar
[2]
Beydoun, D., et al., Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1999. 1: p.439–458.
Google Scholar
[3]
Brezova, V., et al., Phenol decomposition using M n+/TiO2 photocatalysts supported by the sol-gel technique on glass fibres. Journal of Photochemistry and Photobiology A: Chemistry, 1997. 109: pp.177-183.
DOI: 10.1016/s1010-6030(97)00121-4
Google Scholar
[4]
Fatin, S.O., et al., Comparison of Photocatalytic Activity and Cyclic Voltammetry of Zinc Oxide and Titanium Dioxide Nanoparticles toward Degradation of Methylene Blue. Int. J. Electrochem. Sci., 2012. 7: pp.9074-9084.
DOI: 10.1016/s1452-3981(23)16181-5
Google Scholar
[5]
Ahmed, et al., Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of Environmental Management, 2011. 92(3): p.311–330.
DOI: 10.1016/j.jenvman.2010.08.028
Google Scholar
[6]
Nguyen, T.B., M. -J. Hwang, and K. -S. Ryu, Synthesis and High Photocatalytic Activity of Zn-doped TiO2 Nanoparticles by Sol-gel and Ammonia-Evaporation Method. Bull. Korean Chem. Soc. , 2012. 33(1): p.243.
DOI: 10.5012/bkcs.2012.33.1.243
Google Scholar
[7]
Lópeza, T., et al., Photodecomposition of 2, 4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol–gel derived catalysts. Journal of Molecular Catalysis A: Chemical, 2011. 167(1–2): p.101–107.
DOI: 10.1016/s1381-1169(00)00496-9
Google Scholar
[8]
Ahmed, S., et al., Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination, 2010. 261(1–2): p.3–18.
DOI: 10.1016/j.desal.2010.04.062
Google Scholar
[9]
Sobczynski, A., Ł. Duczmal, and W. Zmudzinski, Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. Journal of Molecular Catalysis A: Chemical, 2004 213: p.225–230.
DOI: 10.1016/j.molcata.2003.12.006
Google Scholar
[10]
Kumar, S.G. and L.G. Devi, Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. The Journal of Physical Chemistry A, 2011. 115: p.13211–13241.
DOI: 10.1021/jp204364a
Google Scholar
[11]
Kansal, S.K., M. Singh, and D. Sud, Studies on TiO2/ZnO photocatalysed degradation of lignin. Journal of Hazardous Materials 2008. 153 p.412–417.
DOI: 10.1016/j.jhazmat.2007.08.091
Google Scholar
[12]
Sun, J., et al., Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. Journal of Molecular Catalysis A: Chemical 2006. 260: p.241–246.
DOI: 10.1016/j.molcata.2006.07.033
Google Scholar
[13]
F, A. and N.O. A., Photocatalytic degradation of phenol. Environ Monit Assess. , 2003. 83(3): pp.295-302.
Google Scholar
[14]
Gaya, et al., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2008. 9(1): pp.1-12.
DOI: 10.1016/j.jphotochemrev.2007.12.003
Google Scholar
[15]
Liao, D.L., C.A. Badour, and B.Q. Liao, Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry 2008. 194 p.11–19.
DOI: 10.1016/j.jphotochem.2007.07.008
Google Scholar