[1]
Holzgrabea, U., Nap, C. - J. and Almeling, S. 2010. Control of impurities in l-aspartic acid and l-alanine by high-performance liquid chromatography coupled with a corona charged aerosol detector. Journal of Chromatography A. 1217: 294–301.
DOI: 10.1016/j.chroma.2009.11.036
Google Scholar
[2]
Kleemann, A. W. Leuchtenberger, Hoppe, B. and Tanner, H., in: Gerhartz, W. (Ed. ), Ullmann's Encyclopedia of Industrial Chemistry, A2, 5th ed., VCH Verlagsgesellschaft mbh, Weinheim, (1985).
Google Scholar
[3]
Lechuga-Ballesteros, D. and Rodrlguez-Hornedo, N. 1995. The Influence of Additives on the Growth Kinetics and Mechanism of L-alanine Crystals. International Journal of Pharmaceutics 115: 139-149.
DOI: 10.1016/0378-5173(94)00216-r
Google Scholar
[4]
Poornachary, S. K., Chow, P. S. and Tan, R. B. H. 2008. Effect of solution speciation of impurities on α-glycine crystal habit: A molecular modelling study. Advanced Powder Technology. 19: 459–473.
DOI: 10.1016/j.jcrysgro.2008.02.034
Google Scholar
[5]
Hartman, P. and Perdock, W. G. 1955. On the Relations Between Structure and Morphology of Crystals. Acta Crystallographica. 8: 521 - 524.
Google Scholar
[6]
Clydesdale, G., Thomson, G., B., Walker, E. M., Roberts, K. J., Meenan, P. and Doherty, R. 2005. A Molecular Modeling Study of the Crystal Morphology of Adipic Acid and Its Habit Modification by Homologous Impurities. Crystal Growth & Design. 5 : 2154 – 2163.
DOI: 10.1021/cg049720y
Google Scholar
[7]
Bisker-Lieb, V., Doherty, M. F. 2003. Modeling Crystal Shape of Polar Organic Materials: Applications to Amino Acids. Crystal Growth and Design. 3: 221-237.
DOI: 10.1021/cg025538q
Google Scholar
[8]
Hartman, P. and Bennema, P. 1980. The Attachment Energy as a Habit Controlling Factor I. Theoretical Considerations. Journal of Crystal Growth. 49: 145-156.
DOI: 10.1016/0022-0248(80)90075-5
Google Scholar
[9]
No, K. T., Cho, K. H., Kwon, O. Y., Jhon, M. S., Scheraga, H. A. 1994. Determination of Proton Transfer Energies and Lattice Energies of Several Amino Acid Zwitterions. The Journal of Physical Chemistry. 98: 10742 – 10749.
DOI: 10.1021/j100093a012
Google Scholar
[10]
Destro, R., Soave, R., & Barzaghi, M. (2008). Physicochemical Properties of Zwitterionic L- and DL-Alanine Crystals from Their Experimental and Theoretical Charge Densities. Journal of Physical Chemistry B, 112: 5163 – 5174.
DOI: 10.1021/jp710496q
Google Scholar
[11]
Lu, J. J. & Ulrich, J. (2003). An improved prediction model of morphological modifications of organic crystals induced by additives. Crystal Research and Technology, 38(1): 63–73.
DOI: 10.1002/crat.200310008
Google Scholar
[12]
Pino-García, O., & Rasmuson, Å. C. (2004). Influence of Additives on Nucleation of Vanillin: Experiments and Introductory Molecular Simulations. Crystal Growth & Design, 4(5): 1025-1037.
DOI: 10.1021/cg049955+
Google Scholar
[13]
Anuar, N., Ramli, W., Daud, W., Roberts, K. J., Kamarudin, S. K., & Tasirin S. M. (2012).
Google Scholar
[14]
Massimino, F., Bruno, M., Rubbo, M., & Aquilano, D. (2011). L-α alanine crystals: theoretical and experimental morphology and habit modifications in CaCO3 solution, Crystal Research and Technology, 46: 789 – 794.
DOI: 10.1002/crat.201000600
Google Scholar
[15]
Mojibola, A., Dongmo-Momo, G., Mohammed, M. & Aslan, K. (2014). Crystal Engineering of L‑Alanine with L‑Leucine Additive using Metal- Assisted and Microwave-Accelerated Evaporative Crystallization. Crystal Growth & Design., 14, 2494−2501.
DOI: 10.1021/cg500204t
Google Scholar
[16]
Chickos J. S., & Acree.W. E. Jr. (2002). Enthalpies of Sublimation of Organic and Organometallic Compounds. 1910–2001. Journal of Physical Chemical Reference Data, 31(2): 537 – 698.
DOI: 10.1063/1.1475333
Google Scholar