[1]
U. Ozgur, Ya. I. Alivov, C. Liu, et al, comprehensive review of ZnO materials and devices, J. Appl. Phys. 89 (2005) 041301-1-103.
Google Scholar
[2]
A. Moezzi, A. M. McDonagh, M. B. Cortie, Zinc oxide particles: Synthesis, properties and applications, Chem. Eng. J. 185 – 186 (2012) 1-22.
DOI: 10.1016/j.cej.2012.01.076
Google Scholar
[3]
D. S. Dhawale, C. D. Lokhande, Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance, J. Alloys Compd. 509 (2011) 10092– 10097.
DOI: 10.1016/j.jallcom.2011.08.046
Google Scholar
[4]
R. Scheer, H. -W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, WILEY-VCH Verlag GmbH and Co. KGaA, (2011).
DOI: 10.1002/9783527633708
Google Scholar
[5]
J. Fan, Y. Hao, C. Munuera, M. Garcia-Hernandez, F. Guell, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, A. Cabot, Influence of the Annealing Atmosphere on the Performance of ZnO Nanowire Dye-Sensitized Solar Cells, J. Phys. Chem. C 117(32) (2013).
DOI: 10.1021/jp405557b
Google Scholar
[6]
J. Fan, Y. Hao, A. Cabot, E. M. Johansson, G. Boschloo, A. Hagfeldt, Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells, ACS applied materials & interfaces 5 (6) (2013) 1902-(1906).
DOI: 10.1021/am400042s
Google Scholar
[7]
J. D. Fan, C. Fabrega, R. Zamani, A. Shavel, F. Guell, A. Carrete, T. Andreu, A. M. Lopez, J. R. Morante, J. Arbiol, A. Cabot, Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness, J. Alloys Compd. 555 (2013).
DOI: 10.1016/j.jallcom.2012.11.166
Google Scholar
[8]
J. Fan, R. Zamani, C. Fábrega, A. Shavel, C. Flox, M. Ibáñez, T. Andreu, A. M. López, J. Arbiol, J. R. Morante, A. Cabot, Solution-growth and optoelectronic performance of ZnO: Cl/TiO2 and ZnO: Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness, J. Phys. D: Appl. Phys. 45 (2012).
DOI: 10.1088/0022-3727/45/41/415301
Google Scholar
[9]
J. Fan, F. Güell, C. Fábrega, A. Fairbrother, T. Andreu, A. M. López, J. R. Morante, A. Cabot, Visible photoluminescence components of solution-grown ZnO nanowires: Influence of the surface depletion layer, J. Phys. Chem. C 116 (36) (2012).
DOI: 10.1021/jp302443n
Google Scholar
[10]
J. Fan, F. Guell, C. Fábrega, A. Shavel, A. Carrete, T. Andreu, J. Ramón Morante, A. Cabot, Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile, Appl. Phys. Lett. 99 (26) (2011).
DOI: 10.1063/1.3673287
Google Scholar
[11]
J. D. Fan, A. Shavel, R. Zamani, C. Fabrega, J. Rousset, S. Haller, F. Guell, A. Carrete, T. Andreu, J. Arbiol, J. R. Morante, A. Cabot, Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires, Acta Mater. 59 (17) (2011).
DOI: 10.1016/j.actamat.2011.07.037
Google Scholar
[12]
C. Amutha, A. Dhanalakshmi, B. Lawrence, K. Kulathuraan, V. Ramadas, B. Natarajan, Influence of Concentration on Structural and Optical Characteristics of Nanocrystalline ZnO Thin Films Synthesized by Sol-Gel Dip Coating Method, Progress in Nanotechnology and Nanomaterials 3(1) (2014).
Google Scholar
[13]
T. Prasada Rao, M. C. Santhosh Kumar, A. Safarulla, V. Ganesan, S. R. Barman, C. Sanjeeviraja, Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis, Physica B 405 (2010) 2226-2231.
DOI: 10.1016/j.physb.2010.02.016
Google Scholar
[14]
K.V. Gurav, U.M. Patil, S.M. Pawar, J.H. Kim, C.D. Lokhande, Controlled crystallite orientation in ZnO nanorods prepared by chemical bath deposition: Effect of H2O2, J. Alloys Compd. 509 (2011) 7723-7728.
DOI: 10.1016/j.jallcom.2011.04.094
Google Scholar
[15]
Q. Li, J. Bian, J. Sun, J. Wanga, Y. Luo, K. Sun, D. Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method, Appl. Surf. Sci. 256 (2010) 1698-1702.
DOI: 10.1016/j.apsusc.2009.09.097
Google Scholar
[16]
Z. Y. Wu, J. H. Cai, G. Ni, ZnO films fabricated by chemical bath deposition from zinc nitrate and ammonium citrate tribasic solution, Thin Solid Films 516 (2008) 7318-7322.
DOI: 10.1016/j.tsf.2008.01.014
Google Scholar
[17]
S.B. Jambure, S.J. Patil, A.R. Deshpande, C.D. Lokhande, A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films, Mater. Res. Bull. 49 (2014) 420-425.
DOI: 10.1016/j.materresbull.2013.09.007
Google Scholar
[18]
A. Sahai, N. Goswami, Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method, Physica E 58 (2014) 130-137.
DOI: 10.1016/j.physe.2013.12.009
Google Scholar
[19]
W. -J. Lee, J. -G. Chang, S. -P. Ju, M. -H. Weng, C. -H. Lee, Structure-dependent mechanical properties of ultrathin zinc oxide nanowires, Nanoscale Research Letters 6 (2011) 352-358.
DOI: 10.1186/1556-276x-6-352
Google Scholar
[20]
T. Mahalingam, V. S. John, L. S. Hsu, Microstructural Analysis of Electrodeposited Zinc Oxide Thin Films, J. New Mat. Electrochem. Systems 10 (2007) 9-14.
Google Scholar
[21]
V.D. Mote, Y. Purushotham, B.N. Dole, williamson-hall analysis in estimation of lattice strain in nanometer-sized zno particles, Journal of Theoretical and Applied Physics 6 (2012) 6-12.
DOI: 10.1186/2251-7235-6-6
Google Scholar
[22]
T. O. Berestok, D. I. Kurbatov, N. M. Opanasyuk, A. D. Pogrebnjak, O. P. Manzhos, S. M. Danilchenko, Structural properties of ZnO thin films obtained by chemical bath deposition technique, J. Nano- Electron. Phys. 5(1) (2013) 01001-01004.
Google Scholar
[23]
Selected Powder Diffraction Data for Education Straining (Search manual and data cards), Published by the International Centre for diffraction data, 432 (1997). JCPDSN 79-0207.
Google Scholar
[24]
B.E. Warren, X-ray Diffraction. Dover Books on Physics, New York, (1990).
Google Scholar
[25]
Ja. S. Umanskij, Ju. A. Skakov, A. N. Ivanov, L. N. Rastorgujev, Crystallogaphy, X-ray graph and electronmicroscopy, Moskow, 1982. (in Russian).
Google Scholar
[26]
S. Ilican, Y. Caglar, M. Caglar, Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method, J. Optoelectron. Adv. M. 10(10) (2008) 2578 – 2583.
DOI: 10.1016/j.tsf.2009.03.037
Google Scholar
[27]
V.V. Kosyak, D.I. Kurbatov, M.M. Kolesnyk, A.S. Opanasyuk, S.N. Danilchenko, Yu.P. Gnatenko, Structural and electrical properties of ZnS/CdTe and ZnTe/CdTe heterostructures, Mater. Chemis. Phys. 138 (2013) 731-736.
DOI: 10.1016/j.matchemphys.2012.12.049
Google Scholar
[28]
D. Kurbatov, H. Khlyap, A. Оpanasyuk, Substrate-temperature effect on the microstructural and optical properties of ZnS films obtained by close-spaced vacuum sublimation, Phys. Stat. Sol. A. 206(7) (2009) 1549-1557.
DOI: 10.1002/pssa.200824472
Google Scholar
[29]
S. Adachi, Handbook on Physical Properties of Semiconductors, Springer, (2004).
Google Scholar
[30]
L. S. Palatnik, M. Ja. Phuks, V. M. Kosevich, The Mechanism of Formation and Substructure of Condensed Films, Moskow, 1972. (In Russian).
Google Scholar
[31]
T. Mahalingam, V. S. John, G. Ravi, Microstructural characterization of electrosynthesized ZnTe thin films, Cryst. Res. Technol. 37(4) (2002) 329-339.
DOI: 10.1002/1521-4079(200204)37:4<329::aid-crat329>3.0.co;2-u
Google Scholar
[32]
Selected Powder Diffraction Data for Education Straining (Search manual and data cards), Published by the International Centre for diffraction data, 432 (1997). JCPDS 024-1460.
Google Scholar
[33]
A. S. Opanasyuk, T. O. Berestok, P. M. Fochuk, A. E. Bolotnikov, R. B. James, Structural and sub-structural features of chemically deposited Zinc-oxide thin films, Proc. of SPIE 8823 (2013) 88230Q-1-6.
DOI: 10.1117/12.2023238
Google Scholar
[34]
G. Sh. Thool, A. K. Singh, R.S. Singh, A. Gupta, Md. A. B. H. Susan, Facile synthesis of flat crystal ZnO thin films by solution growth method: A micro-structural investigation, Journal of Saudi Chemical Society (2014).
DOI: 10.1016/j.jscs.2014.02.005
Google Scholar
[35]
A. Drici, G. Djeteli, G. Tchangbedji, H. Derouiche, K. Jondo, K. Napo, J. C. Bernède, S. Ouro-Djobo, M. Gbagba, Structured ZnO thin films grown by chemical bath deposition for photovoltaic applications, Phys. stat. sol. (a) 201(7) (2004).
DOI: 10.1002/pssa.200306806
Google Scholar