Growth Time Effect on the Structural and Sub-Structural Properties of Chemically-Deposited ZnO Films

Article Preview

Abstract:

Nanostructured ZnO films are obtained by chemical bath deposition from zinc nitrate, hexamethylenetetramine and ammonia. The evolution of the structural and sub-structural properties of the films is characterized using high resolution scanning electron microscopy (SEM) and X-ray diffraction analysis. In particular, we detail here the influence of condensation time on the crystal phase, texture quality, lattice constants, grain size, coherent scattering domain size (CSD), microstrain, stress and concentration of dislocations. Obtained condensates have the wurtzite structure with lattice parameters in the range a = 0.3248-0.3254 nm and c = 0.5206-0.5214 nm, depending on the condensation time. The grain size and microstrain in the direction perpendicular to the crystallographic planes (002) are in the range L ~ 26-42 nm and ε ~ (0.59-3.09)·10-3, respectively. Furthermore, the effects of deposition time on microstrain, stress and concentration of dislocations in the layers is established. By adjusting the condensation time, we are able to produce ZnO films with controlled structural properties: from nanorods to continuous nanostructured films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-178

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Ozgur, Ya. I. Alivov, C. Liu, et al, comprehensive review of ZnO materials and devices, J. Appl. Phys. 89 (2005) 041301-1-103.

Google Scholar

[2] A. Moezzi, A. M. McDonagh, M. B. Cortie, Zinc oxide particles: Synthesis, properties and applications, Chem. Eng. J. 185 – 186 (2012) 1-22.

DOI: 10.1016/j.cej.2012.01.076

Google Scholar

[3] D. S. Dhawale, C. D. Lokhande, Chemical route to synthesis of mesoporous ZnO thin films and their liquefied petroleum gas sensor performance, J. Alloys Compd. 509 (2011) 10092– 10097.

DOI: 10.1016/j.jallcom.2011.08.046

Google Scholar

[4] R. Scheer, H. -W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, WILEY-VCH Verlag GmbH and Co. KGaA, (2011).

DOI: 10.1002/9783527633708

Google Scholar

[5] J. Fan, Y. Hao, C. Munuera, M. Garcia-Hernandez, F. Guell, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, A. Cabot, Influence of the Annealing Atmosphere on the Performance of ZnO Nanowire Dye-Sensitized Solar Cells, J. Phys. Chem. C 117(32) (2013).

DOI: 10.1021/jp405557b

Google Scholar

[6] J. Fan, Y. Hao, A. Cabot, E. M. Johansson, G. Boschloo, A. Hagfeldt, Cobalt (II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells, ACS applied materials & interfaces 5 (6) (2013) 1902-(1906).

DOI: 10.1021/am400042s

Google Scholar

[7] J. D. Fan, C. Fabrega, R. Zamani, A. Shavel, F. Guell, A. Carrete, T. Andreu, A. M. Lopez, J. R. Morante, J. Arbiol, A. Cabot, Solution-growth and optoelectronic properties of ZnO: Cl@ZnS core-shell nanowires with tunable shell thickness, J. Alloys Compd. 555 (2013).

DOI: 10.1016/j.jallcom.2012.11.166

Google Scholar

[8] J. Fan, R. Zamani, C. Fábrega, A. Shavel, C. Flox, M. Ibáñez, T. Andreu, A. M. López, J. Arbiol, J. R. Morante, A. Cabot, Solution-growth and optoelectronic performance of ZnO: Cl/TiO2 and ZnO: Cl/ZnxTiOy/TiO2 core–shell nanowires with tunable shell thickness, J. Phys. D: Appl. Phys. 45 (2012).

DOI: 10.1088/0022-3727/45/41/415301

Google Scholar

[9] J. Fan, F. Güell, C. Fábrega, A. Fairbrother, T. Andreu, A. M. López, J. R. Morante, A. Cabot, Visible photoluminescence components of solution-grown ZnO nanowires: Influence of the surface depletion layer, J. Phys. Chem. C 116 (36) (2012).

DOI: 10.1021/jp302443n

Google Scholar

[10] J. Fan, F. Guell, C. Fábrega, A. Shavel, A. Carrete, T. Andreu, J. Ramón Morante, A. Cabot, Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile, Appl. Phys. Lett. 99 (26) (2011).

DOI: 10.1063/1.3673287

Google Scholar

[11] J. D. Fan, A. Shavel, R. Zamani, C. Fabrega, J. Rousset, S. Haller, F. Guell, A. Carrete, T. Andreu, J. Arbiol, J. R. Morante, A. Cabot, Control of the doping concentration, morphology and optoelectronic properties of vertically aligned chlorine-doped ZnO nanowires, Acta Mater. 59 (17) (2011).

DOI: 10.1016/j.actamat.2011.07.037

Google Scholar

[12] C. Amutha, A. Dhanalakshmi, B. Lawrence, K. Kulathuraan, V. Ramadas, B. Natarajan, Influence of Concentration on Structural and Optical Characteristics of Nanocrystalline ZnO Thin Films Synthesized by Sol-Gel Dip Coating Method, Progress in Nanotechnology and Nanomaterials 3(1) (2014).

Google Scholar

[13] T. Prasada Rao, M. C. Santhosh Kumar, A. Safarulla, V. Ganesan, S. R. Barman, C. Sanjeeviraja, Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis, Physica B 405 (2010) 2226-2231.

DOI: 10.1016/j.physb.2010.02.016

Google Scholar

[14] K.V. Gurav, U.M. Patil, S.M. Pawar, J.H. Kim, C.D. Lokhande, Controlled crystallite orientation in ZnO nanorods prepared by chemical bath deposition: Effect of H2O2, J. Alloys Compd. 509 (2011) 7723-7728.

DOI: 10.1016/j.jallcom.2011.04.094

Google Scholar

[15] Q. Li, J. Bian, J. Sun, J. Wanga, Y. Luo, K. Sun, D. Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method, Appl. Surf. Sci. 256 (2010) 1698-1702.

DOI: 10.1016/j.apsusc.2009.09.097

Google Scholar

[16] Z. Y. Wu, J. H. Cai, G. Ni, ZnO films fabricated by chemical bath deposition from zinc nitrate and ammonium citrate tribasic solution, Thin Solid Films 516 (2008) 7318-7322.

DOI: 10.1016/j.tsf.2008.01.014

Google Scholar

[17] S.B. Jambure, S.J. Patil, A.R. Deshpande, C.D. Lokhande, A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films, Mater. Res. Bull. 49 (2014) 420-425.

DOI: 10.1016/j.materresbull.2013.09.007

Google Scholar

[18] A. Sahai, N. Goswami, Structural and vibrational properties of ZnO nanoparticles synthesized by the chemical precipitation method, Physica E 58 (2014) 130-137.

DOI: 10.1016/j.physe.2013.12.009

Google Scholar

[19] W. -J. Lee, J. -G. Chang, S. -P. Ju, M. -H. Weng, C. -H. Lee, Structure-dependent mechanical properties of ultrathin zinc oxide nanowires, Nanoscale Research Letters 6 (2011) 352-358.

DOI: 10.1186/1556-276x-6-352

Google Scholar

[20] T. Mahalingam, V. S. John, L. S. Hsu, Microstructural Analysis of Electrodeposited Zinc Oxide Thin Films, J. New Mat. Electrochem. Systems 10 (2007) 9-14.

Google Scholar

[21] V.D. Mote, Y. Purushotham, B.N. Dole, williamson-hall analysis in estimation of lattice strain in nanometer-sized zno particles, Journal of Theoretical and Applied Physics 6 (2012) 6-12.

DOI: 10.1186/2251-7235-6-6

Google Scholar

[22] T. O. Berestok, D. I. Kurbatov, N. M. Opanasyuk, A. D. Pogrebnjak, O. P. Manzhos, S. M. Danilchenko, Structural properties of ZnO thin films obtained by chemical bath deposition technique, J. Nano- Electron. Phys. 5(1) (2013) 01001-01004.

Google Scholar

[23] Selected Powder Diffraction Data for Education Straining (Search manual and data cards), Published by the International Centre for diffraction data, 432 (1997). JCPDSN 79-0207.

Google Scholar

[24] B.E. Warren, X-ray Diffraction. Dover Books on Physics, New York, (1990).

Google Scholar

[25] Ja. S. Umanskij, Ju. A. Skakov, A. N. Ivanov, L. N. Rastorgujev, Crystallogaphy, X-ray graph and electronmicroscopy, Moskow, 1982. (in Russian).

Google Scholar

[26] S. Ilican, Y. Caglar, M. Caglar, Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method, J. Optoelectron. Adv. M. 10(10) (2008) 2578 – 2583.

DOI: 10.1016/j.tsf.2009.03.037

Google Scholar

[27] V.V. Kosyak, D.I. Kurbatov, M.M. Kolesnyk, A.S. Opanasyuk, S.N. Danilchenko, Yu.P. Gnatenko, Structural and electrical properties of ZnS/CdTe and ZnTe/CdTe heterostructures, Mater. Chemis. Phys. 138 (2013) 731-736.

DOI: 10.1016/j.matchemphys.2012.12.049

Google Scholar

[28] D. Kurbatov, H. Khlyap, A. Оpanasyuk, Substrate-temperature effect on the microstructural and optical properties of ZnS films obtained by close-spaced vacuum sublimation, Phys. Stat. Sol. A. 206(7) (2009) 1549-1557.

DOI: 10.1002/pssa.200824472

Google Scholar

[29] S. Adachi, Handbook on Physical Properties of Semiconductors, Springer, (2004).

Google Scholar

[30] L. S. Palatnik, M. Ja. Phuks, V. M. Kosevich, The Mechanism of Formation and Substructure of Condensed Films, Moskow, 1972. (In Russian).

Google Scholar

[31] T. Mahalingam, V. S. John, G. Ravi, Microstructural characterization of electrosynthesized ZnTe thin films, Cryst. Res. Technol. 37(4) (2002) 329-339.

DOI: 10.1002/1521-4079(200204)37:4<329::aid-crat329>3.0.co;2-u

Google Scholar

[32] Selected Powder Diffraction Data for Education Straining (Search manual and data cards), Published by the International Centre for diffraction data, 432 (1997). JCPDS 024-1460.

Google Scholar

[33] A. S. Opanasyuk, T. O. Berestok, P. M. Fochuk, A. E. Bolotnikov, R. B. James, Structural and sub-structural features of chemically deposited Zinc-oxide thin films, Proc. of SPIE 8823 (2013) 88230Q-1-6.

DOI: 10.1117/12.2023238

Google Scholar

[34] G. Sh. Thool, A. K. Singh, R.S. Singh, A. Gupta, Md. A. B. H. Susan, Facile synthesis of flat crystal ZnO thin films by solution growth method: A micro-structural investigation, Journal of Saudi Chemical Society (2014).

DOI: 10.1016/j.jscs.2014.02.005

Google Scholar

[35] A. Drici, G. Djeteli, G. Tchangbedji, H. Derouiche, K. Jondo, K. Napo, J. C. Bernède, S. Ouro-Djobo, M. Gbagba, Structured ZnO thin films grown by chemical bath deposition for photovoltaic applications, Phys. stat. sol. (a) 201(7) (2004).

DOI: 10.1002/pssa.200306806

Google Scholar