On the Structure of Atomic Clusters: Selection of Calculation Methods to Match Mass Spectra

Article Preview

Abstract:

Studying atomic clusters, their chemical composition can be find by time-of-flight mass spectroscopy even for a miserable quantity of the sample, while their structure determination requires either their production in enough quantity that can be problematic for new substances, or usage of quantum chemical calculations otherwise. However, the result of the calculations depends on the method used. It is suggested in this report to use a correlation between the abundances of the clusters in the mass spectrum and their calculated binding energies as a criterion for selection of an appropriate calculation method. This approach is applied for the case of (ZnO)n and (ZnS)n clusters of n = 12 and 13.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

26-30

Citation:

Online since:

July 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature 318 (1985) 162–163.

DOI: 10.1038/318162a0

Google Scholar

[2] A. Rosen, A sightseeing tour in the world of clusters—serendipity and scientific progress, J. Mol. Graphics Modell. 19 (2001) 236–243.

DOI: 10.1016/s1093-3263(00)00117-0

Google Scholar

[3] T.P. Martin, Shells of atoms, Physics Reports 273 (1996) 199–241.

Google Scholar

[4] A. Burnin, J.J. BelBruno, ZnnSm+ cluster production by laser ablation, Chemical Physics Letters 362 (2002) 341–348.

DOI: 10.1016/s0009-2614(02)01105-3

Google Scholar

[5] A. Kasuya, R. Sivamohan, Yu.A. Barnakov, I.M. Dmitruk, T. Nirasawa, V.R. Romanyuk, V. Kumar, S.V. Mamykin, K. Tohji, B. Jeyadevan, K. Shinoda, T. Kudo, O. Terasaki, Z. Liu, R.V. Belosludov, V. Sundararajan, Y. Kawazoe, Ultra-stable nanoparticles of CdSe revealed from mass spectrometry, Nature materials 3 (2004).

DOI: 10.1038/nmat1056

Google Scholar

[6] V. Romanyuk, I. Dmitruk, Yu. Barnakov, R. Belosludov, A. Kasuya, Ultra-stable nanoparticles in AIIBVI, (AII = Cd, Zn; BVI = S, Se, Te) compounds, J. Nanosci. Nanotechno. 9 (2009) 2111–2118.

DOI: 10.1166/jnn.2009.433

Google Scholar

[7] A. Dmytruk, I. Dmitruk, I. Blonskyy, R. Belosludov, Y. Kawazoe, A. Kasuya, ZnO clusters: laser ablation production and time-of-flight mass spectroscopic study, Microelectron. J 40 (2009) 218–220.

DOI: 10.1016/j.mejo.2008.07.010

Google Scholar

[8] A. Burnin, E. Sanville, J.J. BelBruno, Experimental and computational study of the ZnnSn and ZnnSn+ clusters, J. Phys. Chem. A 109 (2005) 5026–5034.

Google Scholar

[9] S. Hamad, C. Richard A. Catlow, E. Spano, J.M. Matxain, J.M. Ugalde, Structure and properties of ZnS nanoclusters, J. Phys. Chem. B 109 (2005) 2703–2709.

DOI: 10.1021/jp0465940

Google Scholar

[10] C. Richard A. Catlow, S.A. French, A.A. Sokol, A.A. Al-Sunaidi, S.M. Woodley, Zinc oxide: A case study in contemporary computational solid state chemistry, J. Comp. Chem. 29 (2008) 2234–2249.

DOI: 10.1002/jcc.21051

Google Scholar

[11] C. Richard A. Catlow, S.T. Bromley, S. Hamad, M. Mora-Fonz, A.A. Sokol, S.M. Woodley, Modelling nano-clusters and nucleation, Phys. Chem. Chem. Phys. 12 (2010) 786–811.

DOI: 10.1039/b916069h

Google Scholar

[12] X Wang, B Wang, L Tang, L Sai, J Zhao, What is atomic structures of (ZnO)34 magic cluster? Physics Letters A 374 (2010) 850–853.

DOI: 10.1016/j.physleta.2009.11.085

Google Scholar

[13] Alex A. Granovsky, Firefly version 7. 1. G, http: /classic. chem. msu. su/gran/firefly/index. html.

Google Scholar

[14] B. M. Bode, M. S. Gordon, Macmolplt: a graphical user interface for GAMESS, J. Mol. Graphics Mod. 16 (1998) 133–138.

DOI: 10.1016/s1093-3263(99)00002-9

Google Scholar