Laser-Induced Formation of Periodic Structures on the Metal Surfaces and Surface Plasmons Excitation

Article Preview

Abstract:

Quasiperiodic microstructures are formed on the surfaces of metals under irradiation with high-power femtosecond laser pulses. Interpretation of microstructures as a result of interference of the incident plane wave and surface waves leads to the logical conclusion about the relationship of dislocations in the interference fringes with optical vortices in surface wave. Other peculiarities observed in these structures contain different periods and nanogranular fine structure. It is demonstrated that such laser-induced structures can find applications for surface plasmon excitation and surface enhanced Raman scattering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. C. Emmony, R. P. Howson, and L. J. Willis, Laser mirror damage in germanium at 10. 6 mm, Appl. Phys. Lett. 23 (1973) 598-600.

DOI: 10.1063/1.1654761

Google Scholar

[2] Zhou Guosheng, P. M. Fauchet, and A. E. Siegman, Growth of spontaneous periodic surface structures on solids during laser illumination, Phys. Rev. B 26 (1982) 5366-5381.

DOI: 10.1103/physrevb.26.5366

Google Scholar

[3] J.F. Young, J.S. Preston, H.M. van Driel, and J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass, Phys. Rev. B 27 (1983) 1155-1172.

DOI: 10.1103/physrevb.27.1155

Google Scholar

[4] K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, and S. Sakabe, Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation, Phys. Rev. B 82 (2010) 165417-5.

DOI: 10.1103/physrevb.82.165417

Google Scholar

[5] L. Qi, K. Nishii, and Y. Namba, Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel, Optics Letters 34 (2009) 1846-1848.

DOI: 10.1364/ol.34.001846

Google Scholar

[6] T. Sano, M. Yanai, E. Ohmura, Y. Nomura, I. Miyamoto, A. Hirose, K. Kobayashi, Femtosecond laser fabrication of microspike-arrays on tungsten surface, Appl. Surf. Sci. 247 (2005) 340-346.

DOI: 10.1016/j.apsusc.2005.01.049

Google Scholar

[7] S. R. J. Brueck and D. J. Ehrlich, Stimulated Surface-Plasma-Wave Scattering and Growth of a Periodic Structure in Laser-Photodeposited Metal Films, Phys. Rev. Lett. 48 (1982) 1678-1681.

DOI: 10.1103/physrevlett.48.1678

Google Scholar

[8] M. Padgett, J. Courtial, L. Allen, Light's Orbital Angular Momentum, Physics Today 57 (2004) 35-40.

DOI: 10.1063/1.1768672

Google Scholar

[9] N.B. Baranova, B.J. Zeldovich, A.B. Mamaev, N.F. Pilipetskii, V.V. Shkunov, Wavefront dislocations of speckle-inhomogeneous field (theory and experiment), JETP Lett. 33 (1981) 195-199.

Google Scholar

[10] P. Hildebrandt, M.J. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver, Phys. Chem. 88 (1984) 5935-5944.

DOI: 10.1021/j150668a038

Google Scholar

[11] H. Watanabe, N. Hayazawa, Y. Inouye, S.J. Kawata, DFT vibrational calculations of Rhodamine 6G adsorbed on silver: Analysis of tip-enhanced Raman spectroscopy, Phys. Chem. B 109 (2005) 5012-5020.

DOI: 10.1021/jp045771u

Google Scholar