Brominated Poly(2,6-dimethyl-1,4-phenylene oxide)/Carbon Materials Nanocomposite Membranes for CO2/N2 Separation

Article Preview

Abstract:

The mechanical strength of polymeric membranes is one of the limitations for their applications. Carbon materials are effective in reinforcing polymeric materials, but it is unknown whether they would degrade the membranes’ gas separation performance. In this paper, using brominated poly (2,6-dimethyl-1,4-phenylene oxide) (BPPO) as matrix, nanocomposite membranes of BPPO/graphene, BPPO/carbon back and BPPO/fullerene were prepared. The CO2 permeability and CO2/N2 selectivity of the nanocomposite membranes were studied. Different from the BPPO/carbon black and BPPO/fullerene membranes, the BPPO/graphene membrane was found having improved gas separation performance after incorporation 2 wt. % graphene.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-181

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Itta, H.H. Tseng, M.Y. Wey, Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation, Journal of Membrane Science. 372 (2011) 387-395.

DOI: 10.1016/j.memsci.2011.02.027

Google Scholar

[2] K. Ghosal, R.T. Chern, Aryl-nitration of poly(phenylene oxide) and polysulfone: structural characterization and gas permeability, Journal of Membrane Science. 72(1992) 91-97.

DOI: 10.1016/0376-7388(92)80058-r

Google Scholar

[3] F. Hamad, K.C. Khulbe, T. Matsuura, Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes, Journal of Membrane Science. 256 (2005), 29-37.

DOI: 10.1016/j.memsci.2004.12.050

Google Scholar

[4] G. Chowdhury, R. Vujosevic, T. Matsuura, B. Laverty, Effects of polymer molecular weight and chemical modification on the gas transport properties of poly(2, 6-dimethyl-1, 4-phenylene oxide), Journal of Applied Polymer Science. 77 (2000).

DOI: 10.1002/1097-4628(20000801)77:5<1137::aid-app22>3.0.co;2-8

Google Scholar

[5] B.J. Story, W.J. Koros, Sorption and transport of CO2 and CH4 in chemically modified poly(phenylene oxide), Journal of Membrane Science. 67 (1992) 191.

DOI: 10.1016/0376-7388(92)80025-f

Google Scholar

[6] H. Cong, X Hu., M. Radosz, Y. Shen, Brominated Poly(2, 6-diphenyl-1, 4- phenylene oxide) and Its Silica Nanocomposite Membranes for Gas Separation, Industrial and Engineering Chemistry Research. 46 (2007) 2567-2575.

DOI: 10.1021/ie061494x

Google Scholar

[7] H. Cong, M. Radosz, B.F. Towler, Y. Shen, Polymer-inorganic nanocomposite membranes for gas separation, Separation and Purification Technology. 55 (2007) 281-291.

DOI: 10.1016/j.seppur.2006.12.017

Google Scholar

[8] P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Separation and Purification Technology. 81 (2011) 243-264.

DOI: 10.1016/j.seppur.2011.07.042

Google Scholar

[9] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Sorption, Transport, and Structural Evidence for Enhanced Free Volume in Poly(4-methyl-2-pentyne)/Fumed Silica Nanocomposite Membranes, Chemistry of Materials. 15 (2003).

DOI: 10.1021/cm020672j

Google Scholar

[10] L. Shao, J. Samseth, M.B. Hägg, Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations, Journal of Membrane Science. 326 (2009) 285-292.

DOI: 10.1016/j.memsci.2008.09.053

Google Scholar

[11] L. Shao, J. Samseth, M.B. Hägg, Crosslinking and stabilization of nanoparticle filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes for gas separations, Journal of Applied Polymer Science. 113 (2009) 3078-3088.

DOI: 10.1002/app.30320

Google Scholar

[12] S. Matteycci, V.A. Kusuma, S.D. Kelman, B.D. Freeman, Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites, Polymer. 49 (2008) 1659-1675.

DOI: 10.1016/j.polymer.2008.01.004

Google Scholar

[13] F. Moghadam, M.R. Omidkhah, E.V. Farahani, M.Z. Pedram, F. Dorosti, The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes, Separation and Purification Technology. 77 (2011) 128-136.

DOI: 10.1016/j.seppur.2010.11.032

Google Scholar

[14] C. Joly, S. Goizet, J.C. Schrotter, J. Sanchez, M. Escoubes, Sol-gel polyimide-silica composite membrane: gas transport properties, Journal of Membrane Science. 130 (1997) 63-74.

DOI: 10.1016/s0376-7388(97)00008-2

Google Scholar

[15] L. Ge, Z. Zhu, F. Li, S. Liu, L. Wang, X. Tang, V. Rudolph, Investigation of Gas Permeability in Carbon Nanotube (CNT)-Polymer Matrix Membranes via Modifying CNTs with Functional Groups/Metals and Controlling Modification Location, Journal of Physical Chemistry C. 115 (2011).

DOI: 10.1021/jp1120965

Google Scholar

[16] H. Cong, J. Zhang, M. Radosz, Y. Shen, Carbon nanotube composite membranes of brominated poly(2, 6-dipheny-1, 4-phenylene oxide) for gas separation, Journal of Membrane Science. 294 (2007) 178-185.

DOI: 10.1016/j.memsci.2007.02.035

Google Scholar

[17] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society. 80 (1958) 1339-1339.

DOI: 10.1021/ja01539a017

Google Scholar

[18] J. Zhao, S. Pei, W. Ren, L. Gao, H.M. Cheng, Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films, ACS Nano. 4 (2010) 5245-5252.

DOI: 10.1021/nn1015506

Google Scholar

[19] Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen, L. Dai, Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications, Journal of Physical Chemistry Letter. 3 (2012) 1607-1612.

DOI: 10.1021/jz3005877

Google Scholar

[20] W.J. Koros, A.H. Chan, D.R. Paul, Sorption and transport of various gases in polycarbonate, Journal of Membrane Science. 2 (1977) 165-190.

DOI: 10.1016/s0376-7388(00)83242-1

Google Scholar

[21] X. Hu, J. Tang, A. Blasig, Y. Shen, M. Radosz, CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen, Journal of Membrane Science. 281 (2006).

DOI: 10.1016/j.memsci.2006.03.030

Google Scholar