[1]
A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angewandte Chemie. 46 (2007) 1222-1244.
DOI: 10.1002/anie.200602866
Google Scholar
[2]
Y. Liu, J. Zhou, J. Gong, W.P. Wu, et al, The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite, Electrochimica Acta. 111 (2013) 876-887.
DOI: 10.1016/j.electacta.2013.08.077
Google Scholar
[3]
H. Yang, X. Liu, R. Fei, Y. Hu, Sensitive and selective detection of Ag+ in aqueous solutions using Fe3O4@Au nanoparticles as smart electrochemical nanosensors, Talanta. 116 (2013) 548-553.
DOI: 10.1016/j.talanta.2013.07.041
Google Scholar
[4]
M. Stefan, C. Leostean, O. Pana, M.L. Soran, et al. Synthesis and characterization of Fe3O4@ZnS and Fe3O4@Au@ZnS core-shell nanoparticles, Applied Surface Science. 288 (2014) 180-192.
DOI: 10.1016/j.apsusc.2013.10.005
Google Scholar
[5]
E. Boisselier, D. Astruc. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chemical Society reviews. 38 (2009) 1759-1782.
DOI: 10.1039/b806051g
Google Scholar
[6]
Z. Hankun, G. Ning, L. Tianhua, C. Yuting, et al. The sandwich-type electrochemiluminescence immunosensor for alpha-fetoprotein based on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP, Analytica chimica acta. 746 (2012).
DOI: 10.1016/j.aca.2012.08.036
Google Scholar
[7]
F. Yan, R. Sun. Facile synthesis of bifunctional Fe3O4/Au nanocomposite and their application in catalytic reduction of 4-nitrophenol, Materials Research Bulletin. 57 (2014) 293-299.
DOI: 10.1016/j.materresbull.2014.06.012
Google Scholar
[8]
P. Jing, W.J. Xu, H.Y. Yi, Y.M. Wu, et al. An amplified electrochemical aptasensor for thrombin detection based on pseudobienzymic Fe3O4-Au nanocomposites and electroactive hemin/G-quadruplex as signal enhancers, Analyst. 139 (2014) 1756-1761.
DOI: 10.1039/c3an02237d
Google Scholar
[9]
T. Smuc, I.Y. Ahn, H. Ulrich. Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics, Journal of pharmaceutical and biomedical analysis. 81 (2013) 210-217.
DOI: 10.1016/j.jpba.2013.03.014
Google Scholar
[10]
K. Papamichael, M. Kreuzer, G. Guilbault. Viability of allergy (IgE) detection using an alternative aptamer receptor and electrochemical means, Sensors and Actuators B: Chemical. 121 (2007) 178-186.
DOI: 10.1016/j.snb.2006.09.024
Google Scholar
[11]
F. Kejun, K. Yan, Z. Jingjin, L. Yali, et al. Electrochemical immunosensor with aptamer-based enzymatic amplification, Analytical biochemistry. 378 (2008) 38-42.
Google Scholar
[12]
K. Somayeh, S. Abdollah, T. Hazhir, H Rahman. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode, Biosensors & bioelectronics. 43 (2013).
DOI: 10.1016/j.bios.2012.12.006
Google Scholar
[13]
G.Y. Li, Y.R. Jiang, K.L. Huang, P. Ding, L.L. Yao. Kinetics of adsorption of Saccharomyces cerevisiae mandelated dehydrogenase on magnetic Fe3O4–chitosan nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 320 (2008).
DOI: 10.1016/j.colsurfa.2008.01.017
Google Scholar
[14]
L. Weiyan, Z. Yan, G. Shenguang, S. Xianrang, et al. Core-shell Fe3O4-Au magnetic nanoparticles based nonenzymatic ultrasensitive electrochemiluminescence immunosensor using quantum dots functionalized graphene sheet as labels, Analytica chimica acta. 770 (2013).
DOI: 10.1016/j.aca.2013.01.039
Google Scholar
[15]
H. Zhou, J. Lee, T.J. Park, S.J. Lee, et al. Ultrasensitive DNA monitoring by Au–Fe3O4 nanocomplex[J]. Sensors and Actuators B: Chemical. 163 (2012) 224-32.
DOI: 10.1016/j.snb.2012.01.040
Google Scholar
[16]
J.G. Zhang, T.F. Kang, R. Xue, X. Sun. An Immunosensor for Microcystins Based on Fe3O4 @Au Magnetic Nanoparticle Modified Screen-Printed Electrode, Chinese Journal of Analytical Chemistry. 41 (2013) 1353-1358.
DOI: 10.1016/s1872-2040(13)60679-9
Google Scholar