A Theoretical Study of Nonlinear Optical Properties for Stilbene Grafted to Carbon Nanotubes

Article Preview

Abstract:

DFT method was used to calculate the equilibrium geometries, electron structures and first-hyperpolarizabilities of grafted SWCNT (4,4) by organic chromophore stilbene at B3LYP/6-31G* level. ZINDO method was also used to calculate first-and second-hyperpolarizabilities. The calculated results show that stilbene graftings make the energy gap a little reduced and the maximum absorption wavelength red shifted, however grafting of stilbene breaks the symmetry of pure nanotube and lets hyperpolarizability increase obviously. We also found that grafting on tube mouth results in better nonlinear for their better conjugation and amide bond-linking shows bigger hyperpolarizabilities relative to direct bond-linking.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-153

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. W. Boyd, Nonlinear Optics, Academic Press, New York, (1992).

Google Scholar

[2] M. Blanchard-Desce, J. -M. Lehn, M. Barzoukas, C. Runser, A. Fort, I. Ledoux, J. Zyss, Nonlinear Opt. 10 (1995) 23.

DOI: 10.1109/cleoe.1994.636401

Google Scholar

[3] P. N. Prasad, D. J. Williams, Wiley, New York, (1991).

Google Scholar

[4] D. A. Parthenopoulos, P. M. Rentzepis, Science 245 (1989) 843.

Google Scholar

[5] D. N. Christodoulides, I. C. Khoo, G. J. Salsmo, G. I. Stegeman, E. W. Van Stryland, Adv. Opt. Photonics, 2 (2010) 60.

Google Scholar

[6] G.S. He, J.D. Bhawalkar, C.F. Zhao, P.N. Prasad, Appl. Phys. Lett. 67 (1995) 2433.

Google Scholar

[7] W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, S. R. Marder, Science 296 (2002) 1106.

Google Scholar

[8] S. Kawata, H. -B. Sun, T. Tanaka, K. Takada, Nature 412 (2001) 697.

Google Scholar

[9] V. Y. Prinz, V. A. Seleznev, A. K. Gutakovsky, A. V. Chekhovsky, V. V. Preobrazhenskii, M. A. Putyato, T. A. Gavrilova, Physica E 6 (2000) 828.

DOI: 10.1016/s1386-9477(99)00249-0

Google Scholar

[10] P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, Z. L. Wang, Science 309 (2005)1700.

Google Scholar

[11] W. Denk, J. H. Strickler, W.W. Webb, Science 248 (1990) 73.

Google Scholar

[12] G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, A. G. Dillard, Opt. Lett. 20 (1995) 43.

Google Scholar

[13] M. Calvete, G. Y. Yang, M. Hanack, Synth. Met. 141 (2004) 231.

Google Scholar

[14] J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, P. N. Prasad, J. Clin. Laser. Med. Surg. 5 (1997) 201.

Google Scholar

[15] J. Svensson, N. Antu, N. Vainorius, B. M. Borg, L. E. Wernersson, Nano Lett. 13(2013) 1380.

Google Scholar

[16] V. A. Margulis, T. A. Sizikova, Phys. B 245 (1998) 173.

Google Scholar

[17] D. -S. Wu, W. -D. Cheng, H. Zhang, X. -D. Li, Y. -Z. Lan, D. -G. Chen, Y. -J. Gong, Y. -C. Zhang, Phys. Rev. B 68(2003)125402.

Google Scholar

[18] D. Xiao, F. A. Bulat, W. Yang, D. N. Beratan, Nano lett. 8 (2008) 2814.

Google Scholar

[19] H. -L. Xu, R. -L. Zhong, S. -L. Sun, Z. -M Su, J. Phys. Chem. C. 115 (2011)16340.

Google Scholar

[20] H. -L. Xu, Z. -R. Li, D. Wu, F. Ma, Z. -J. Li, J. Phys. Chem. C. 113 (2009) 4984.

Google Scholar

[21] R. Li, X. Wang, Z. Ji, B. Sun, H. Zhang, C. H. Chang, S. Lin, H. Meng, Y. -P. Liao, M. Wang, Z. Li, A. A. Hwang, T. -B. Song, R. Xu, Y. Yang, J. I. Zink, A. E. Nel, T. Xia, ACS NANO. 7 (2013) 2352.

DOI: 10.1021/nn305567s

Google Scholar

[22] O. Loboda, R. Zaleśny, A. Avramopoulos, J. -M. Luis, B. Kirtman, N. Tagmatarchis, H. Reis, M. G. Papadopoulos, J. Phys. Chem. A 113 (2009) 1159.

DOI: 10.1021/jp808234x

Google Scholar