Near-Infrared Reflection Spectra of Copper Nanowire Array Structures

Article Preview

Abstract:

We present a detailed study on near-infrared (NIR) reflection spectra of Cu nanowire arrays (NWAs) which are embedded in porous anodic alumina oxide templates and with pore diameters from 35 nm to 80 nm. We find that the NIR reflection of these samples is out of the frequency regime for surface-plasmon resonance induced by intra-and inter-band excitations. However, the intensity of the NIR reflection of Cu NWAs depends strongly on sample parameters and temperature. The measurements are carried out at temperatures setting to be 4 K, 77 K, 200 K, and at room temperature. The optical response of the Cu NWAs in NIR bandwidth is attributed to localized surface-plasmon oscillations and the NIR reflectance increases with temperature up to room-temperature. The physical mechanisms behind these interesting findings are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-128

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. L. Gurmeet, K. Sanjeev, N. K. Verma, Fabrication and electrical characterization of highly ordered copper nanowires, Appl. Nanosci. 2 (2012) 7-13.

Google Scholar

[2] M. S. Sander, R. Gronsky, T. Sands, and A. M. Sracy, Structure of Bismuth Telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates, J. Chem. Mater. 15 (2003) 335-339.

DOI: 10.1021/cm0207604

Google Scholar

[3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers , B. Gates , Y. Yin, F. Kim, and H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15 (2003) 353-389.

DOI: 10.1002/adma.200390087

Google Scholar

[4] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 415 (2002) 617-620.

DOI: 10.1038/415617a

Google Scholar

[5] U. Kriebig, M. Vollmer, Springer-Verlag, Optical properties of metal clusters, Heidelberg, Germany, (1995).

Google Scholar

[6] Z. Q. Tian, B. Ren, D. Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem. B 106 (2002).

DOI: 10.1021/jp0257449

Google Scholar

[7] D. P. E. Smith, Quantum point contact switches, Science 269 (1995) 371-373.

Google Scholar

[8] R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi, and L. T. Li, Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane, J. Phys. Chem. B 108 (2004) 16713-16716.

DOI: 10.1021/jp0474172

Google Scholar

[9] Y. Y. Zhang, W. Xu, S. H. Xu, T. F. Guo, Y. M. Xiao, and J. G. Hu, Optical properties of Ni and Cu nanowire arrays and Ni/Cu superlattice nanowire arrays, Nano. Lett. 7 (2012) 569.

DOI: 10.1186/1556-276x-7-569

Google Scholar

[10] L. W. Chou, N. Shin, S. V. Sivaram, M. A. Filler, Tunable mid-infrared localized surface plasmon resonances in silicon nanowires, J. Am. Chem. Soc. 134 (2012) 16155-16158.

DOI: 10.1021/ja3075902

Google Scholar

[11] W. F. Zhou, T. F. Guo, X. F. Li, S. H. Xu, L. Chen, B. Wu, and L. D. Zhang, In situ X-ray diffraction study on the orientation-dependent thermal expansion of Cu nanowires, J. Phys. Chem. C 113 (2009) 9568-9572.

DOI: 10.1021/jp900047q

Google Scholar