Investigation of Cu Species in CuBTC: Active Sites for Selective Catalytic Reduction of NO with NH3

Article Preview

Abstract:

The classical metal-organic Frameworks CuBTC showed remarkable low temperature activity in selective catalytic reduction of NO with NH3 (NH3-SCR). It was found the conversion of NO can reach as high as 100% in the range 210-300 °C on the activated sample. The nature of the active Cu species among CuBTC in NH3-SCR based on the activity data were characterized by TEM, XPS, XRD, EPR and IR. This high activity is not only due to the unsaturated metal centers of the frameworks, but also to the presence of high-dispersed Cu2O particles. Both Cu2+ and Cu+ species are the active sites for NH3-SCR.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-141

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jesse L. C. Rowsel, Elinor C. Spencer, Juergen Eckert, Judith A. K. Howard, Omar M. Yaghi1, Gas Adsorption Sites in a Large-Pore Metal-Organic Framework, Science, 309 (2005)1350 -1354.

DOI: 10.1126/science.1113247

Google Scholar

[2] Q. Y Yang, C. L. Zhong, Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal−organic frameworks. J. Phys. Chem. B. 110 (2006) 17776-17784.

DOI: 10.1021/jp062723w

Google Scholar

[3] Z. X Zhao, Z. Li, Y. S. Lin, Adsorption and diffusion of carbon dioxide on metal−organic framework (MOF-5). Ind. Eng. Chem. Res., 48 (2009) 10015-10018.

DOI: 10.1021/ie900665f

Google Scholar

[4] J. R Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H. K Jeong, P. B. Balbuena, H. C. Zhou, Carbon dioxide capture-related gas adsorption separation in metal−organic frameworks. Coord. Chem. Rev. 255 (2011) 1791-1797.

DOI: 10.1016/j.ccr.2011.02.012

Google Scholar

[5] G. Fe´rey, C. Mellot-Draznieks, C. Serre, F. Millange,J. Dutour, S. Surble´, I. Margiolaki4, A Chromium Terephthalate–Based Solid with Unusually Large Pore Volumes and Surface Area, Science , 309 (2005) 2040 -(2042).

DOI: 10.1126/science.1116275

Google Scholar

[6] M. Eddaoudi, J. Kim, N. Rosi,D. Vodak, J. Wachter, M. OÕKeeffe O.M. Yaghi, Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage, Science, 295 (2002) 469 -472.

DOI: 10.1126/science.1067208

Google Scholar

[7] A. C. Sudik, A. R. Millward, N. n W. Ockwig, A.P. Cote ,J. Kim, O. M. Yaghi, Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra, J. AM. CHEM. SOC. 127 (2005).

DOI: 10.1021/ja042802q.s001

Google Scholar

[8] Z. Lu, C. B. Knobler, H. Furukawa, B. Wang, G. Liu, O. M. Yaghi, Synthesis and Structure of Chemically Stable Metal-Organic Polyhedra, J. AM. CHEM. SOC. 131 (2009)12532–12533.

DOI: 10.1021/ja905101s

Google Scholar

[9] Y. Fu, D. Sun, M. Qin, R. Huang , Z. Li, Cu(II)-and Co(II)-containing metal–organic frameworks (MOFs) as catalysts for cyclohexene oxidation with oxygen under solvent-free conditions, RSC Adv., 2 (2012) 3309–3314.

DOI: 10.1039/c2ra01038k

Google Scholar

[10] S. S. Y Chui, S. M. F Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science, 283(1999)1148.

DOI: 10.1126/science.283.5405.1148

Google Scholar

[11] E. Biemmi, C. Scherb, T. Bein, Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3xH2O Tunable with Functionalized Self-Assembled Monolayers, J. AM. CHEM. SOC. 129 (2007) 8054-8055.

DOI: 10.1021/ja0701208.s001

Google Scholar

[12] M. Schlesinger, S. Schulze, M. Hietschold, M. Mehring, Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)], Microporous and Mesoporous Materials, 132 (2010).

DOI: 10.1016/j.micromeso.2010.02.008

Google Scholar

[13] J. B. Decoste, G. W. Peterson, M. W. Smith, C. A. Stone, C. R. Willis, Enhanced Stability of Cu-BTC MOF via Perfluorohexane Plasma-Enhanced Chemical Vapor Deposition, J. Am. Chem. Soc. 134 (2012) 1486−1489.

DOI: 10.1021/ja211182m

Google Scholar

[14] A. Sachse, R. Ameloot, B. Coq, F. Fajula, B. Coasne, D. D. Vos , A. Galarneau, In situ synthesis of CuBTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis, Chem. Commun., 48 (2012) 4749–4751.

DOI: 10.1039/c2cc17190b

Google Scholar

[15] C. Zhou , L. Cao, S. Wei , Q. Zhang , L. Chen, A first principles study of gas adsorption on charged CuBTC, Computational and Theoretical Chemistry, 976 (2011) 153–160.

DOI: 10.1016/j.comptc.2011.08.018

Google Scholar

[16] B. Superonowicz, A. Mavrandonakis, T. Heine, Interaction of Small Gases with Unsaturated Metal Centers of the HKUST-1 Metal Organic Framework, J. Phy. Chem. C, 117 (2013) 14570-14578.

DOI: 10.1021/jp4018037

Google Scholar

[17] C. Prestipino, L. Regli, J. G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina,P. L. Solari, K. O. Kongshaug, S. Bordiga, Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates. Chem. Mater. 18 (2006).

DOI: 10.1021/cm052191g

Google Scholar

[18] T. Granato, F. Testa, R. Olivo, Catalytic activity of HKUST-1 coated on ceramic foam, Microporous and Mesoporous Materials, 153 (2012) 236–246.

DOI: 10.1016/j.micromeso.2011.12.055

Google Scholar

[19] Lien T.L. Nguyen, Tung T. Nguyen, Khoa D. Nguyen, Nam T.S. Phan, Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction, Applied Catalysis A: 425– 426 (2012) 44–52.

DOI: 10.1016/j.apcata.2012.02.045

Google Scholar

[20] K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Microporous and Mesoporo us Materials , 73 (2004) 81–88.

DOI: 10.1016/j.micromeso.2003.12.027

Google Scholar

[21] K. S. Walton, A. R. Millward, D. Dubbeldam, H Frost, J. J. Low, O. M. Yaghi, R. Q. Snurr, Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. J. Am. Chem. Soc. 130 (2008) 406-411.

DOI: 10.1021/ja076595g

Google Scholar

[22] W. Morris, B. Leung, H. Furukawa, Omar K. Yaghi, N. He, H. Hayashi, M. Asta, Brian B. Laird, Omar M. Yaghi, A Combined Experimental-Computational Investigation of Carbon Dioxide Capture in a Series of Isoreticular Zeolitic Imidazolate Frameworks, J. AM. CHEM. SOC. 132 (2010).

DOI: 10.1021/ja104035j

Google Scholar

[23] J. Ye , C. J. Liu, Cu3(BTC)2: CO oxidation over MOF based catalysts, Chem. Commun., 47 (2011) 2167–2169.

DOI: 10.1039/c0cc04944a

Google Scholar

[24] J. M. Zamaro, N. C. Perez, E. E. Miro , C. Casado ,B. Seoane, C. Tellez, J. Coronas, HKUST-1 MOF: A matrix to synthesize CuO and CuO–CeO2 nanoparticle catalysts for CO oxidation, Chemical Engineering Journal , 195-196 (2012) 180–187.

DOI: 10.1016/j.cej.2012.04.091

Google Scholar

[25] L. Grajciar, O. Bludsky, P. Nachtigall, Water Adsorption on Coordinatively Unsaturated Sites in CuBTC MOF, J. Phys. Chem. Lett. 1 (2010) 3354–3359.

DOI: 10.1021/jz101378z

Google Scholar

[26] N. Pollock, G. Fowler, L. J. Twyman, S. L. McArthur, Synthesis and characterization of immobilized PAMAM dendrons, Chem. Commun. 52 (2007) 2482–2484.

DOI: 10.1039/b701550j

Google Scholar

[27] E. Borfecchia,S. Maurelli,D. Gianolio,E. Groppo,M. Chiesa,F. Bonino, C. Lamberti, Insights into Adsorption of NH3 on HKUST-1 Metal−Organic Framework: A Multitechnique Approach, J. Phys. Chem. C, 116 ( 2012) 19839−19850.

DOI: 10.1021/jp305756k

Google Scholar

[28] G. W. Peterson, G. W. Wagner, A. Balboa, J. Mahle, T. Sewell, Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterize by MAS NMR, J. Phys. Chem. C, 113 (2009) 13906-13917.

DOI: 10.1021/jp902736z

Google Scholar

[29] Y.K. Seo, G. Hundal, Y. K. Hwang, Microwave synthesis of hybrid inorganic-organic materials including porous Cu3(BTC)2 from Cu(II)-triesate mixture, Microsporous and Mesoporous Materials, 1 (2009) 19331-19337.

DOI: 10.1016/j.micromeso.2008.10.035

Google Scholar

[30] D. Mustafa, E. Breynaert, S.R. Bajpe, Stability improvement of Cu3(BTC)2 metal-organic frameworks under steaming conditions by encapsulation of a Keggin polyoxometalate, Chem. Commun., 47 (2011) 8037-8039.

DOI: 10.1039/c1cc12341f

Google Scholar

[31] K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Microporous and Mesoporous Materials , 73 (2004) 81–88.

DOI: 10.1016/j.micromeso.2003.12.027

Google Scholar