Refluxing Synthesis and Characterization of ZnO Nanopowders from Different Zinc Salts

Article Preview

Abstract:

In this article, ZnO nanopowders formed from different zinc salts such as acetate, nitrate and sulphate were prepared via homogeneous precipitation followed by refluxing route. Several analytic techniques such as XRD, TEM, and UV-Vis were used to make characterizations of the as-synthesized samples. The results showed that ZnO nanopowders prepared from the sulphate and nitrate salts have merely close crystalline size values, and a smaller crystalline size was obtained for the ZnO formed from acetate counter ions. The band gap of the samples synthesized with the counter ions (CH3COO-, NO3-, and SO42-) were 3.05 ± 0.02, 3.14 ± 0.02 and 3.16 ± 0.02, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-107

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Chen, L. Shao, China Particuol. 1 (2003) 64-9.

Google Scholar

[2] Y.W. Chen, Q. Qiao, Y.C. Liu, G.L. Yang, J. Phys. Chem. C 113 (2009) 7497-7502.

Google Scholar

[3] J. Wang, L. Gao, Inorg. Chem. Commun. 6 (2003) 877-881.

Google Scholar

[4] J. Huang, Y. Wu, C. Gu, M. Zhai, K. Yu, M. Yang, et al., Sens. Actuators B Chem. 146 (2010) 206-212.

Google Scholar

[5] J. Li, H.Q. Fan, X.H. Jia, J. Phys. Chem. C 114 (2010) 14684-14691.

Google Scholar

[6] S.J. Ding, D.Y. Luan, F.Y.C. Boey, J.S. Chen, X.W. Lou, Chem. Commun. 47 (2011) 7155-7157.

Google Scholar

[7] M. Pudukudy, Z. Yaakob, B. Narayanan, A. Gopalakrishnan, S.M. Tasirin, Superlatt. Microstruct. 64 (2013) 15-26.

Google Scholar

[8] S.X.W. Sun, J.Z. Huang, J.X. Wang, Z.A. Xu, Nano Lett. 8 (2008) 1219-1223.

Google Scholar

[9] D. Sarkar, S. Tikku, V. Thapar, R.S. Srinivasa, K.C. Khilar, Colloids Surf. A 381 (2011) 123-129.

Google Scholar

[10] C.W. Nahm, C.H. Park, J. Mater. Sci. 35 (2000) 3037-3042.

Google Scholar

[11] O.A. Fouad, A.A. Ismail, Z.I. Zaki, Appl. Catal. B 62 (2006) 144–149.

Google Scholar

[12] Z. Zhou, H. Deng, J. Yi, Mater. Res. Bull. 34 (1999) 1563–1567.

Google Scholar

[13] T. Shishido, K. Yubuta, T. Sato, J. Alloys Compd. 439 (2007) 227–231.

Google Scholar

[14] R. Vijaya Kumar, R. Elgamiel, J. Cryst. Growth 250 (2003) 409–417.

Google Scholar

[15] U. Alver, T. Kilinc, F. Aslan, Thin Solid Films 515 (2007) 3448–3451.

Google Scholar

[16] W.W. Wang, Y.J. Zhu, Inorg. Chem. Commun. 7 (2004) 1003–1005.

Google Scholar

[17] C.S. Lin, C.C. Hwang, W.H. Lee, Mater. Sci. Eng. B 140 (2007) 31–37.

Google Scholar

[18] Y. Liu, Y. Song, J. Disp. Sci. Technol. 27 (2006) 1191–1195.

Google Scholar

[19] K. Elen, M.K. Van Bael, Chem. Lett. 35 (2006) 1420–1421.

Google Scholar

[20] X. Zhou, Z.X. Xie, Chem. Commun. (2005) 5572–5574.

Google Scholar

[21] Y. Sakka, K. Halada, Ceram. Trans. 1 (1988) 31–38.

Google Scholar

[22] E. Tang, B. Tian, Chem. Eng. Commun. 195 (2008) 479–491.

Google Scholar

[23] K. Fujita, K. Matsuda, Bull. Chem. Soc. Jpn. 65 (1992) 2270–2271.

Google Scholar

[24] T. Tsuchida, S. Kitajima, Chem. Lett. (1990) 1769–1772.

Google Scholar

[25] Y. Liu, J. Zhou, J. Mater. Proc. Technol. 189 (2007) 379–383.

Google Scholar

[26] S. He, H. Maeda, Mater. Lett. 61 (2007) 626–628.

Google Scholar

[27] A. Celikkaya, M, Akinc, J. Am. Ceram. Soc. 73 (1990) 245-250.

Google Scholar

[28] Y.I. Cho, D.S. Hwang, Ceram. Trans. 146 (2005) 59-66.

Google Scholar

[29] D. Sarkar, S. Tikku, V. Thapar, Colloids Surf A2011; 38: 123-129.

Google Scholar

[30] A. Khorsand Zak, R. Yousefi, W.H. Abd Majid, M.R. Muhamad, Ceram. Inter. 38 (2012) 2059-(2064).

Google Scholar