Optimization of Moulding Parameters on the Electrical Conductivity of Carbon Black/Graphite/Epoxy Composite for Bipolar Plateusing the Taguchi Method

Article Preview

Abstract:

Optimization of the moulding parameters on the carbon black/graphite/epoxy (CB/G/EP) composite for bipolar plate application using the Taguchi method was carrying out. Moulding parameters of the compression moulding process such as moulding temperature, moulding pressure and moulding time were measured. Analysis of variance (ANOVA) shows that, the most significant moulding parameter is moulding time with percentage contribution of 59.98%.The confirmation experiment using additive model shows that, the electrical conductivity of CB/G/EP composites was 168.50 S/cm. The electrical conductivity of CB/G/EP composite was improved 65.72 % compare with the initial trial. The results show that Taguchi method is an effective approach to obtain the optimal moulding parameters of the CB/G/EP composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

201-206

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Taherian, A. N. Golikand and M. J. Hadianfard, 2011. Materials and Design Vol. 32 (2011), p.3883.

Google Scholar

[2] H. Suherman, J. Sahari and A. B. Sulung: Ceramics International Vol. 39 (2013), p.7159.

Google Scholar

[3] H. Suherman, J. Sahari and A. B. Sulung: International Journal of Mechanical and Materials Engineering (IJMME), Vol. 5 (2010), p.74.

Google Scholar

[4] http: /www1. eere. energy. gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells. 20pdf.

Google Scholar

[5] J. Scholta, B. Rohland, V. Trapp and U. Focken, Journal of Power Sources Vol. 84 (1999), p.231.

DOI: 10.1016/s0378-7753(99)00322-5

Google Scholar

[6] H. Suherman, A.B. Sulung and J. Sahari: Ceramics International Vol. 39 (2013), p.1277.

Google Scholar

[7] B. D. Cunningham and D. G. Baird: Journal of Power Sources vol. 168 (2007), p.418.

Google Scholar

[8] C. Y. Yen, S. H. Liao, Y. F. Lin, C. H. Hung, Y. Y. Lin and C. C. M. Ma: Journal of Power Sources vol. 162 (2006), p.309.

Google Scholar

[9] J. K. Kuo and C. K. Chen. Journal of Power Sources vol. 153 (2006), p.41.

Google Scholar

[10] R. Dweiri and J. Sahari: Journal of Power Sources vol. 171 (2007), p.424.

Google Scholar

[11] Q. Yin, A. Li, W. Wang, L. Xia, Y. Wang: Journal of Power Sources vol. 165 (2007), p.717.

Google Scholar

[12] M. Nalbant, H. Gokkaya and G. Sur: Materials Design Vol. 28 (2007), p.1379.

Google Scholar

[13] W. H. Yang and Y. S. Tarng: Journal of Materials Processing and Technology, Vol. 84 (1998), p.122.

Google Scholar

[14] J. A. Ghani, I. A. Choudhury, H. H. Hassan. J. Mater, Process Tech. Vol. 145 (2003), p.84.

Google Scholar

[15] Y. T. Liu, W. C. Chang and Y. Yamagata. CIRP Journal of Manufacturing Science and Technology Vol. 3 (2010), p.40.

Google Scholar

[16] R. Surace and L. A. C. Filippis, A. D. Ludovico, G. Boghetich. Int J Mater Form. Vol. 3 (2010), p.1.

Google Scholar

[17] P. Vijian, V and P. Arunachalam. J Mater Process Tech Vol. 180 (2006), p.161.

Google Scholar

[18] A. G. Olabi, G. Casalino, K. Y. Benyounis and M. S. J. Hashmi. Adv Eng Softw Vol. 37 (2006), p.643.

Google Scholar

[19] D. Ko, D. Kim , B. Kim. Int J Mach Tool Manu. Vol. 39 (1999), p.771.

Google Scholar

[20] M. Z. Selamat, J. Sahari, N. Muhamad and A. Muchtar. Key Engineering Materials. Vol. 471-472 (2011), p.361.

Google Scholar

[21] H. Suherman, J. Sahari and A. B. Sulung. Applied Mechanics and Materials Vol. 52-54 (2011), p.31.

Google Scholar

[22] H. Suherman, J. Sahari and A. B. Sulung. Advanced Science Letters Vol. 19 (2013), p.334.

Google Scholar

[23] H. J. Yang, P. J. Hwang and S. H. Lee. Int J Mach Tool Manu Vol. 42 (2002), p.1203.

Google Scholar

[24] Y. T. Liu, W. C. Chang and Y. Yamagata. CIRP Journal of Manufacturing Science and Technology Vol. 3(2010), p.40.

Google Scholar