Excimer Laser Crystallization of Nanocrystalline Silicon Thin Films

Article Preview

Abstract:

Nanocrystalline silicon (nc-Si) thin film on glass substrate is subjected to excimer laser crystallized by varying the laser energy density in the range of 50~600 mJ/cm2. The effect of excimer laser crystallization on the structure of silicon film is investigated using Raman spectroscopy, X-ray diffraction, atomic force microscopy and scanning electron microscopy. The results show that polycrystalline silicon thin films can be obtained by excimer laser crystallization of nc-Si films. A laser threshold energy density of 200 mJ/cm2 is estimated from the change of crystalline fraction and surface roughness of the treated films. The growth of grain is observed and the crystallization mechanism is discussed based on the super lateral growth model. The nanocrystalline silicon grains in the films act as seeds for lateral growth to large grains.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

361-368

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.D. Brotherton, D.J. McCulloch, J.P. Gowers, J.R. Ayres, M.J. Trainor, Influence of melt depth in laser crystallized poly-Si thin film transistors, J. Appl. Phys. 82 (1997) 4086-4094.

DOI: 10.1063/1.365719

Google Scholar

[2] P.I. Widenborg, A.G. Aberle, Hydrogen-induced dopant neutralisation in p-type AIC poly-Si seed layers functioning as buried emitters in ALICE thin film solar cells on glass, J Cryst. Growth 306 (2007) 177-186.

DOI: 10.1016/j.jcrysgro.2007.03.053

Google Scholar

[3] A. Baiano, R. Ishihara, J. Van der Cingel, K. Beenakker, Strained single-grain silicon n- and p-channel thin-film transistors by excimer laser, IEEE Electr. Device Lett. 31 (2010) 308-310.

DOI: 10.1109/led.2010.2040131

Google Scholar

[4] K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, T. Kurosawa, Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy, Jpn. J. Appl. Phys. 42 (2003) 6742-6747.

DOI: 10.1143/jjap.42.6742

Google Scholar

[5] J. Viatella, R.K. Singh, Transient recrystallization of amorphous silicon films, Mat. Sci. Eng. B-Solid 47 (1997) 78-86.

DOI: 10.1016/s0921-5107(96)01887-9

Google Scholar

[6] C. -C. Kuo, Micro-Raman spectroscopy characterization of polycrystalline silicon films fabricated by excimer laser crystallization, Opt. Laser. Eng. 47 (2009) 612-616.

DOI: 10.1016/j.optlaseng.2008.06.018

Google Scholar

[7] A.A.D.T. Adikaari, N.K. Mudugamuwa, S.R.P. Silva, Use of an asymmetric pulse profile for higher crystalline volumes from excimer laser crystallization of amorphous silicon, Appl. Phys. Lett. 90 (2007) 171912.

DOI: 10.1063/1.2731664

Google Scholar

[8] S. Gall, C. Becker, K.Y. Lee, T. Sontheimer, B. Rech, Growth of polycrystalline silicon on glass for thin-film solar cells, J. Cryst. Growth 312 (2010) 1277-1281.

DOI: 10.1016/j.jcrysgro.2009.12.065

Google Scholar

[9] A.A.D.T. Adikaari, N.K. Mudugamuwa, S.R.P. Silva, Nanocrystalline silicon solar cells from excimer laser crystallization of amorphous silicon, Sol. Energy Mater. Sol. Cells 92 (2008) 634-638.

DOI: 10.1016/j.solmat.2008.01.011

Google Scholar

[10] N.K. Mudugamuwa, A.A.D.T. Adikaari, D.M.N.M. Dissanayake, V. Stolojan, S.R.P. Silva, Reversible increase of photocurrents in excimer laser-crystallized silicon solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 1378-1381.

DOI: 10.1016/j.solmat.2008.05.012

Google Scholar

[11] W. -C. Yeh, M. Matsumura, Preparation of giant-grain seed layer for poly-silicon thin-film solar cells, Jpn. J. Appl. Phys. 38 (1999) L110-L112.

DOI: 10.1143/jjap.38.l110

Google Scholar

[12] J.S. Im, H.J. Kim, M.O. Thompson, Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films, Appl. Phys. Lett. 63 (1993) 1969-(1971).

DOI: 10.1063/1.110617

Google Scholar

[13] J.S. Im, H.J. Kim, On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films, Appl. Phys. Lett. 64 (1994) 2303-2305.

DOI: 10.1063/1.111651

Google Scholar

[14] S. Higashi, N. Ando, K. Kamisako, T. Sameshima, Stress in pulsed-laser-crystallized silicon films, Jpn. J. Appl. Phys. 40 (2001) 731-735.

DOI: 10.1143/jjap.40.731

Google Scholar

[15] T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, J.F. Bergamini, Microcrystalline silicon and excimer laser crystallized silicon thin film transistors on the same substrate, Thin Solid Films 515 (2007) 7585-7589.

DOI: 10.1016/j.tsf.2006.11.164

Google Scholar

[16] T. Pier, K. Kandoussi, C. Simon, N. Coulon, T. Mohammed-Brahim, H. Lhermite, Excimer laser crystallization of microcrystalline silicon for TFTs on flexible substrate, J. Non-cryst. Solids 354 (2008) 2300-2304.

DOI: 10.1016/j.jnoncrysol.2007.10.087

Google Scholar

[17] T. Pier, K. Kandoussi, C. Simon, N. Coulon, T. Mohammed-Brahim, H. Lhermite, Excimer laser annealing of microcrystalline silicon, Phys. Stat. Sol. C 5 (2008) 3234-3238.

DOI: 10.1002/pssc.200879513

Google Scholar

[18] Y.L. He, C.Z. Yin, G.X. Cheng, L.C. Wang, X.N. Liu, G.Y. Hu, The structure and properties of nanosize crystalline silicon films, J. Appl. Phys. 75 (1994) 797-803.

DOI: 10.1063/1.356432

Google Scholar

[19] K.H. Li, W.Z. Shen, Uniformity and bandgap engineering in hydrogenated nanocrystalline silicon thin films by phosphorus doping for solar cell application, J. Appl. Phys. 106 (2009) 063505.

DOI: 10.1063/1.3223328

Google Scholar

[20] H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah, Microcrystalline silicon and micromorph tandem solar cells, Appl. Phys. A-Mater. 69 (1999) 169-177.

DOI: 10.1007/s003390050987

Google Scholar

[21] M.R. Semler, J.M. Hoey, S. Guruvenket, C.R. Gette, O.F. Swenson, E.K. Hobbie, Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence, J. Appl. Phys. 115 (2014) 163503.

DOI: 10.1063/1.4872464

Google Scholar

[22] A.A.D.T. Adikaari, S.R.P. Silva, Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon, J. Appl. Phys. 97 (2005) 114305.

DOI: 10.1063/1.1898444

Google Scholar

[23] A.T. Voutsas, A new era of crystallization: advances in polysilicon crystallization and crystal engineering, Appl. Surf. Sci. 208-209 (2003) 250-262.

DOI: 10.1016/s0169-4332(02)01343-0

Google Scholar

[24] D. Klinger, E. Łusakowska, D. Żymierska, Nano-structure formed by nanosecond laser anealing on amorphous Si surface, Mat. Sci. Semicon. Proc. 9 (2006) 323-326.

DOI: 10.1016/j.mssp.2006.01.027

Google Scholar

[25] D.J. McCulloch, S.D. Brotherton, Surface roughness effects in laser crystallized polycrystalline silicon, Appl. Phys. Lett. 66 (1995) 2060-(2062).

DOI: 10.1063/1.113902

Google Scholar

[26] J.S. Im, M.A. Crowder, R.S. Sposili, J.P. Leonard, H.J. Kim, J.H. Yoon, V.V. Gupta, H.J. Song, H.S. Cho, Controlled super-lateral growth of Si films for microstructural manipulation and optimization, Phys. Stat. Sol. A 166 (1998) 603-617.

DOI: 10.1002/(sici)1521-396x(199804)166:2<603::aid-pssa603>3.0.co;2-0

Google Scholar