[1]
S.D. Brotherton, D.J. McCulloch, J.P. Gowers, J.R. Ayres, M.J. Trainor, Influence of melt depth in laser crystallized poly-Si thin film transistors, J. Appl. Phys. 82 (1997) 4086-4094.
DOI: 10.1063/1.365719
Google Scholar
[2]
P.I. Widenborg, A.G. Aberle, Hydrogen-induced dopant neutralisation in p-type AIC poly-Si seed layers functioning as buried emitters in ALICE thin film solar cells on glass, J Cryst. Growth 306 (2007) 177-186.
DOI: 10.1016/j.jcrysgro.2007.03.053
Google Scholar
[3]
A. Baiano, R. Ishihara, J. Van der Cingel, K. Beenakker, Strained single-grain silicon n- and p-channel thin-film transistors by excimer laser, IEEE Electr. Device Lett. 31 (2010) 308-310.
DOI: 10.1109/led.2010.2040131
Google Scholar
[4]
K. Kitahara, K. Ohnishi, Y. Katoh, R. Yamazaki, T. Kurosawa, Analysis of defects in polycrystalline silicon thin films using Raman scattering spectroscopy, Jpn. J. Appl. Phys. 42 (2003) 6742-6747.
DOI: 10.1143/jjap.42.6742
Google Scholar
[5]
J. Viatella, R.K. Singh, Transient recrystallization of amorphous silicon films, Mat. Sci. Eng. B-Solid 47 (1997) 78-86.
DOI: 10.1016/s0921-5107(96)01887-9
Google Scholar
[6]
C. -C. Kuo, Micro-Raman spectroscopy characterization of polycrystalline silicon films fabricated by excimer laser crystallization, Opt. Laser. Eng. 47 (2009) 612-616.
DOI: 10.1016/j.optlaseng.2008.06.018
Google Scholar
[7]
A.A.D.T. Adikaari, N.K. Mudugamuwa, S.R.P. Silva, Use of an asymmetric pulse profile for higher crystalline volumes from excimer laser crystallization of amorphous silicon, Appl. Phys. Lett. 90 (2007) 171912.
DOI: 10.1063/1.2731664
Google Scholar
[8]
S. Gall, C. Becker, K.Y. Lee, T. Sontheimer, B. Rech, Growth of polycrystalline silicon on glass for thin-film solar cells, J. Cryst. Growth 312 (2010) 1277-1281.
DOI: 10.1016/j.jcrysgro.2009.12.065
Google Scholar
[9]
A.A.D.T. Adikaari, N.K. Mudugamuwa, S.R.P. Silva, Nanocrystalline silicon solar cells from excimer laser crystallization of amorphous silicon, Sol. Energy Mater. Sol. Cells 92 (2008) 634-638.
DOI: 10.1016/j.solmat.2008.01.011
Google Scholar
[10]
N.K. Mudugamuwa, A.A.D.T. Adikaari, D.M.N.M. Dissanayake, V. Stolojan, S.R.P. Silva, Reversible increase of photocurrents in excimer laser-crystallized silicon solar cells, Sol. Energy Mater. Sol. Cells 92 (2008) 1378-1381.
DOI: 10.1016/j.solmat.2008.05.012
Google Scholar
[11]
W. -C. Yeh, M. Matsumura, Preparation of giant-grain seed layer for poly-silicon thin-film solar cells, Jpn. J. Appl. Phys. 38 (1999) L110-L112.
DOI: 10.1143/jjap.38.l110
Google Scholar
[12]
J.S. Im, H.J. Kim, M.O. Thompson, Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films, Appl. Phys. Lett. 63 (1993) 1969-(1971).
DOI: 10.1063/1.110617
Google Scholar
[13]
J.S. Im, H.J. Kim, On the super lateral growth phenomenon observed in excimer laser-induced crystallization of thin Si films, Appl. Phys. Lett. 64 (1994) 2303-2305.
DOI: 10.1063/1.111651
Google Scholar
[14]
S. Higashi, N. Ando, K. Kamisako, T. Sameshima, Stress in pulsed-laser-crystallized silicon films, Jpn. J. Appl. Phys. 40 (2001) 731-735.
DOI: 10.1143/jjap.40.731
Google Scholar
[15]
T. Pier, K. Kandoussi, C. Simon, N. Coulon, H. Lhermite, T. Mohammed-Brahim, J.F. Bergamini, Microcrystalline silicon and excimer laser crystallized silicon thin film transistors on the same substrate, Thin Solid Films 515 (2007) 7585-7589.
DOI: 10.1016/j.tsf.2006.11.164
Google Scholar
[16]
T. Pier, K. Kandoussi, C. Simon, N. Coulon, T. Mohammed-Brahim, H. Lhermite, Excimer laser crystallization of microcrystalline silicon for TFTs on flexible substrate, J. Non-cryst. Solids 354 (2008) 2300-2304.
DOI: 10.1016/j.jnoncrysol.2007.10.087
Google Scholar
[17]
T. Pier, K. Kandoussi, C. Simon, N. Coulon, T. Mohammed-Brahim, H. Lhermite, Excimer laser annealing of microcrystalline silicon, Phys. Stat. Sol. C 5 (2008) 3234-3238.
DOI: 10.1002/pssc.200879513
Google Scholar
[18]
Y.L. He, C.Z. Yin, G.X. Cheng, L.C. Wang, X.N. Liu, G.Y. Hu, The structure and properties of nanosize crystalline silicon films, J. Appl. Phys. 75 (1994) 797-803.
DOI: 10.1063/1.356432
Google Scholar
[19]
K.H. Li, W.Z. Shen, Uniformity and bandgap engineering in hydrogenated nanocrystalline silicon thin films by phosphorus doping for solar cell application, J. Appl. Phys. 106 (2009) 063505.
DOI: 10.1063/1.3223328
Google Scholar
[20]
H. Keppner, J. Meier, P. Torres, D. Fischer, A. Shah, Microcrystalline silicon and micromorph tandem solar cells, Appl. Phys. A-Mater. 69 (1999) 169-177.
DOI: 10.1007/s003390050987
Google Scholar
[21]
M.R. Semler, J.M. Hoey, S. Guruvenket, C.R. Gette, O.F. Swenson, E.K. Hobbie, Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence, J. Appl. Phys. 115 (2014) 163503.
DOI: 10.1063/1.4872464
Google Scholar
[22]
A.A.D.T. Adikaari, S.R.P. Silva, Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon, J. Appl. Phys. 97 (2005) 114305.
DOI: 10.1063/1.1898444
Google Scholar
[23]
A.T. Voutsas, A new era of crystallization: advances in polysilicon crystallization and crystal engineering, Appl. Surf. Sci. 208-209 (2003) 250-262.
DOI: 10.1016/s0169-4332(02)01343-0
Google Scholar
[24]
D. Klinger, E. Łusakowska, D. Żymierska, Nano-structure formed by nanosecond laser anealing on amorphous Si surface, Mat. Sci. Semicon. Proc. 9 (2006) 323-326.
DOI: 10.1016/j.mssp.2006.01.027
Google Scholar
[25]
D.J. McCulloch, S.D. Brotherton, Surface roughness effects in laser crystallized polycrystalline silicon, Appl. Phys. Lett. 66 (1995) 2060-(2062).
DOI: 10.1063/1.113902
Google Scholar
[26]
J.S. Im, M.A. Crowder, R.S. Sposili, J.P. Leonard, H.J. Kim, J.H. Yoon, V.V. Gupta, H.J. Song, H.S. Cho, Controlled super-lateral growth of Si films for microstructural manipulation and optimization, Phys. Stat. Sol. A 166 (1998) 603-617.
DOI: 10.1002/(sici)1521-396x(199804)166:2<603::aid-pssa603>3.0.co;2-0
Google Scholar