[1]
C. Dawedeit, S. O. Kucheyev, S. J. Shin, et al, Grain size dependent physical and chemical properties of thick CVD diamond films for high energy density physics experiments, Diamond Relat. Mater. 40 (2013) 75-81.
DOI: 10.1016/j.diamond.2013.10.001
Google Scholar
[2]
H. Sumiya, K. Harano, Y. Ishida, Mechanical properties of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT, Diamond Relat. Mater. 41 (2014) 14-19.
DOI: 10.1016/j.diamond.2013.10.014
Google Scholar
[3]
W. D. Wang, D. W. He, M. J. Tang, et al, Superhard composites of cubic silicon nitride and diamond. Diamond Relat. Mater. 27-28 (2012) 49-53.
DOI: 10.1016/j.diamond.2012.05.013
Google Scholar
[4]
J. W. Yan, K. Syoji, J. Tamaki, Some observations on the wear of diamond tools in ultra-precision cutting of single-crystalline silicon, Wear 255 (2003) 1380-1387.
DOI: 10.1016/s0043-1648(03)00076-0
Google Scholar
[5]
G. Saurav, X. C. Luo, L. R. Robert, Wear mechanism of diamond tools against single crystalline silicon in single point diamond turning process, Tribo. Intl. 57 (2013) 272-281.
DOI: 10.1016/j.triboint.2012.06.027
Google Scholar
[6]
Q. Liang, C. S. Yan, Y. F. Meng, et al, Enhancing the mechanical properties of single-crystalline CVD diamond, J. Phys.: Condens. Matter 21 (2009) 364215.
DOI: 10.1088/0953-8984/21/36/364215
Google Scholar
[7]
L. D. Fazio, S. Syngellakis, R. J. K. Wood, et al, Nanoindentation of CVD diamond: comparison of an FE model with analytical and experimental data, Diamond Relat. Mater. 10 (2010) 765-769.
DOI: 10.1016/s0925-9635(00)00496-9
Google Scholar
[8]
S. Ozcan, K. Farhang, P. Filip, Assessment and verification of a novel method for near surface measurement of mechanical properties, Trans. ASME 29 (2007) 314-320.
DOI: 10.1115/1.2540550
Google Scholar
[9]
A. Richter, C. P. Daghlian, R. Ries, et al, Investigation of novel superhard materials by multi-cycling nanoindentation, Diamond Relat. Mater. 15 (2006) 2019-(2023).
DOI: 10.1016/j.diamond.2006.09.015
Google Scholar
[10]
H. Sumiya, K. Harano, Distinctive mechanical properties of nano-polycrystallineline diamond synthesized by direct conversion sintering under HPHT, Diamond Relat. Mater. 24 (2012) 44-48.
DOI: 10.1016/j.diamond.2011.10.013
Google Scholar
[11]
N. Toda, H. Kimizuka, S. Ogata, DFT-based FEM analysis of nonlinear effects on indentation process in diamond crystalline, Intl. J. Mech. Sci. 52 (2010) 303-308.
DOI: 10.1016/j.ijmecsci.2009.09.035
Google Scholar
[12]
A. Richter, R. Ries, R. Smith, et al, Nanoindentation of diamond, graphite and fullerene films, Diamond Relat. Maer. 9 (2000) 170-184.
DOI: 10.1016/s0925-9635(00)00188-6
Google Scholar
[13]
Y. P. Cao, M. Dao, J. Liu, A precise correcting method for the study of the superhard material using nanoindentation tests, J. Mater. Res. 22 (2007) 1255-1264.
DOI: 10.1557/jmr.2007.0150
Google Scholar
[14]
M. Wiora, K. Brühne, A. Flöter, et al, Grain size dependent mechanical properties of nanocrystallineline diamond films grown by hot-filament CVD, Diamond Relat. Mater. 18 (2009) 927-930.
DOI: 10.1016/j.diamond.2008.11.026
Google Scholar
[15]
W. G. Jiang, J. J. Su, X. Q. Feng, Effect of surface roughness on nanoindentation test of thin films. Engng. Fract. Mech. 75 (2008) 4965-4972.
DOI: 10.1016/j.engfracmech.2008.06.016
Google Scholar
[16]
M. Qasmi, P. Delobelle, Influence of the average roughness Rms on the precision of the Young's modulus and hardness determination using nanoindentation technique with a Berkovich indenter, Surf. Coat. Technol. 201(2006)1191-1199.
DOI: 10.1016/j.surfcoat.2006.01.058
Google Scholar
[17]
ISO 14577-1: 2002, Metallic materials-instrumented indentation test for hardness and other materials parameters-Part 1: Test method.
DOI: 10.3403/02697842
Google Scholar
[18]
R. A. Mirshams, R. M. Pothapragada, Correlation of nanoindentation measurements of nickel made using geometrically different indenter tips, Acta Mater. 54 (2006) 1123-1134.
DOI: 10.1016/j.actamat.2005.10.048
Google Scholar