[1]
C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phy. Rev. Lett., 97 (2006) 187401.
DOI: 10.1103/physrevlett.97.187401
Google Scholar
[2]
M. I. Katsnelson, Graphene: carbon in two dimensions, Mater. Today, 10 (2007) 20-27.
Google Scholar
[3]
K. S. Novoselov, A. K. Geim1, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[4]
D. C. Elias, R. R. Nair1, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall1, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science, 323 (2009).
DOI: 10.1126/science.1167130
Google Scholar
[5]
K. S. Novoselov, A. K. Geim1, S. V. Morozov, D. Jiang1, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200.
DOI: 10.1038/nature04233
Google Scholar
[6]
V. Singha, D. Jounga, L. Zhaia, S. Dasa, S. I. Khondakera, Graphene based materials: Past, present and future, Prog. Mater. Sci., 56 (2011) 1178-1272.
Google Scholar
[7]
K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Room-Temperature Quantum Hall Effect in Graphene, Science, 315 (2007) 1379.
DOI: 10.1126/science.1137201
Google Scholar
[8]
A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183-191.
Google Scholar
[9]
Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Experimental observation of quantum Hall effect and Berry's phase in grapheme, Nature, 438 (2005) 201-203.
DOI: 10.1038/nature04235
Google Scholar
[10]
L. Huang, Zh. Zhang, B. Chen, X. Ma, H. Zhong, L. M. Peng, Ultra-sensitive graphene Hall elements, Appl. Phys. Lett., 104 (2014) 183106.
Google Scholar
[11]
L. J. Van der Pauw, Philips Tech. Rev., A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape, 20 (1958) 220-224.
Google Scholar
[12]
L. J. Van der Pauw, Determination of resistivity tensor and Hall tensor of anisotropic conductors, Philips Research Reports, 16 (1961) 187-195.
Google Scholar
[13]
E. H. Putley, W. H. Mitchell, The Electrical Conductivity and Hall Effect of Silicon, Proc. Phys. Soc., 72 (1958) 193-200.
DOI: 10.1088/0370-1328/72/2/303
Google Scholar
[14]
A. B. Sproul, M. A. Green, Improved value for the silicon intrinsic carrier concentration from 275 to 375 K, J. Appl. Phys., 70 (1991) 846-854.
DOI: 10.1063/1.349645
Google Scholar
[15]
G. W. Ludwig and R. L. Watters, Drift and Conductivity Mobility in Silicon, Phys. Rev., 101 (1956) 1699-1700.
DOI: 10.1103/physrev.101.1699
Google Scholar
[16]
J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L.V. Saraf, I. A. Aksay, J. Liu, J.G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode, Nano Lett., 11, (2011) 5071-8.
DOI: 10.1021/nl203332e
Google Scholar
[17]
H. J. Hrostowski, F. J. Morin, T. H. Geballe, and G. H. Wheatley, Hall Effect and Conductivity of InSb, Phys. Rev., 100 (1955) 1672-1676.
DOI: 10.1103/physrev.100.1672
Google Scholar