Research on Hall Effect of Graphene by Var Der Pauw Method

Article Preview

Abstract:

Graphene is a two-dimensional material consisting of single atomic layers of graphite. Its quality is markedly different from conventional graphite and semiconductor material. In this paper, electrical conductivity and Hall Effect of the graphene were measured at room temperature by Var der Pauw method. An ohmic contact of the sample and the electrodes was constructed and tested before the measurement of Hall Effect. With the help of the Var der Pauw method, the Hall voltages of the samples were measured under the static magnetic field and different input currents. Sequentially, a series of Hall parameters of graphene were obtained. The results shown that the Hall coefficient RH is 7.00*10-7 m3/C; the carrier concentration n is 10.52*1024 m-3 that is fifteen orders of magnitude bigger than silicon; the Hall element production sensitivity KH is 6.87*102 m2/C and the carrier mobility was 1,882.54 cm2·V-1·s-1 which is much bigger than silicon. The measurement results in this paper can provide some reference for graphene’s research and application in related areas.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

383-387

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phy. Rev. Lett., 97 (2006) 187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[2] M. I. Katsnelson, Graphene: carbon in two dimensions, Mater. Today, 10 (2007) 20-27.

Google Scholar

[3] K. S. Novoselov, A. K. Geim1, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[4] D. C. Elias, R. R. Nair1, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall1, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane, Science, 323 (2009).

DOI: 10.1126/science.1167130

Google Scholar

[5] K. S. Novoselov, A. K. Geim1, S. V. Morozov, D. Jiang1, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438 (2005) 197-200.

DOI: 10.1038/nature04233

Google Scholar

[6] V. Singha, D. Jounga, L. Zhaia, S. Dasa, S. I. Khondakera, Graphene based materials: Past, present and future, Prog. Mater. Sci., 56 (2011) 1178-1272.

Google Scholar

[7] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Room-Temperature Quantum Hall Effect in Graphene, Science, 315 (2007) 1379.

DOI: 10.1126/science.1137201

Google Scholar

[8] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., 6 (2007) 183-191.

Google Scholar

[9] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Experimental observation of quantum Hall effect and Berry's phase in grapheme, Nature, 438 (2005) 201-203.

DOI: 10.1038/nature04235

Google Scholar

[10] L. Huang, Zh. Zhang, B. Chen, X. Ma, H. Zhong, L. M. Peng, Ultra-sensitive graphene Hall elements, Appl. Phys. Lett., 104 (2014) 183106.

Google Scholar

[11] L. J. Van der Pauw, Philips Tech. Rev., A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape, 20 (1958) 220-224.

Google Scholar

[12] L. J. Van der Pauw, Determination of resistivity tensor and Hall tensor of anisotropic conductors, Philips Research Reports, 16 (1961) 187-195.

Google Scholar

[13] E. H. Putley, W. H. Mitchell, The Electrical Conductivity and Hall Effect of Silicon, Proc. Phys. Soc., 72 (1958) 193-200.

DOI: 10.1088/0370-1328/72/2/303

Google Scholar

[14] A. B. Sproul, M. A. Green, Improved value for the silicon intrinsic carrier concentration from 275 to 375 K, J. Appl. Phys., 70 (1991) 846-854.

DOI: 10.1063/1.349645

Google Scholar

[15] G. W. Ludwig and R. L. Watters, Drift and Conductivity Mobility in Silicon, Phys. Rev., 101 (1956) 1699-1700.

DOI: 10.1103/physrev.101.1699

Google Scholar

[16] J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L.V. Saraf, I. A. Aksay, J. Liu, J.G. Zhang, Hierarchically porous graphene as a lithium-air battery electrode, Nano Lett., 11, (2011) 5071-8.

DOI: 10.1021/nl203332e

Google Scholar

[17] H. J. Hrostowski, F. J. Morin, T. H. Geballe, and G. H. Wheatley, Hall Effect and Conductivity of InSb, Phys. Rev., 100 (1955) 1672-1676.

DOI: 10.1103/physrev.100.1672

Google Scholar