[1]
Association, A. and A.W. Society, Aluminum and Aluminum alloys. 1997, Miami, Florida. 119.
Google Scholar
[2]
Rehim, S.S.A., H.H. Hassan, and M.A. Amin, Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique. Applied Surface Science, 2002. 187(3–4): pp.279-290.
DOI: 10.1016/s0169-4332(01)01042-x
Google Scholar
[3]
Corrosion of Aluminum and Aluminum Alloys. 1999, Materials Park, Ohio: ASM International. 313.
Google Scholar
[4]
Osborne, J.H., Observations on chromate conversion coatings from a sol–gel perspective. Progress in Organic Coatings, 2001. 41(4): pp.280-286.
DOI: 10.1016/s0300-9440(01)00143-6
Google Scholar
[5]
Gallardo, J., et al., Effect of Sintering Temperature on the Corrosion and Wear Behavior of Protective SiO2-Based Sol-Gel Coatings. Journal of Sol-Gel Science and Technology, 2003. 27(2): pp.175-183.
DOI: 10.1023/a:1023702701850
Google Scholar
[6]
Jing, C. and J. Hou, Sol-gel-derived alumina/polyvinylpyrrolidone hybrid nanocomposite film on metal for corrosion resistance. Journal of Applied Polymer Science, 2007. 105(2): pp.697-705.
DOI: 10.1002/app.26074
Google Scholar
[7]
Zaharescu, M., et al., SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corrosion Science, 2009. 51(9): p.1998-(2005).
DOI: 10.1016/j.corsci.2009.05.022
Google Scholar
[8]
Phani, A.R., et al., Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys. Materials and Corrosion, 2005. 56(2): pp.77-82.
DOI: 10.1002/maco.200403823
Google Scholar
[9]
Sharma, A. and A.K. Singh, Electroless Ni-P and Ni-P-Al2O3 Nanocomposite Coatings and Their Corrosion and Wear Resistance. Journal of Materials Engineering and Performance, 2013. 22(1): pp.176-183.
DOI: 10.1007/s11665-012-0224-1
Google Scholar
[10]
Poznyak, S.K., et al., Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Progress in Organic Coatings, 2008. 62(2): pp.226-235.
DOI: 10.1016/j.porgcoat.2007.12.004
Google Scholar
[11]
Montemor, M.F. and M.G.S. Ferreira, Cerium salt activated nanoparticles as fillers for silane films: Evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochimica Acta, 2007. 52(24): pp.6976-6987.
DOI: 10.1016/j.electacta.2007.05.022
Google Scholar
[12]
Hamdy, A.S., Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Materials Letters, 2006. 60(21–22): pp.2633-2637.
DOI: 10.1016/j.matlet.2006.01.049
Google Scholar
[13]
Montemor, M.F. and M.G.S. Ferreira, Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates. Progress in Organic Coatings, 2008. 63(3): pp.330-337.
DOI: 10.1016/j.porgcoat.2007.11.008
Google Scholar
[14]
Montemor, M.F., R. Pinto, and M.G.S. Ferreira, Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochimica Acta, 2009. 54(22): pp.5179-5189.
DOI: 10.1016/j.electacta.2009.01.053
Google Scholar
[15]
Schem, M., et al., CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corrosion Science, 2009. 51(10): pp.2304-2315.
DOI: 10.1016/j.corsci.2009.06.007
Google Scholar
[16]
Zhong, X., et al., Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corrosion Science, 2008. 50(8): pp.2304-2309.
DOI: 10.1016/j.corsci.2008.05.016
Google Scholar
[17]
Kobayashi, Y., T. Ishizaka, and Y. Kurokawa, Preparation of alumina films by the sol-gel method. Journal of Materials Science, 2005. 40(2): pp.263-283.
DOI: 10.1007/s10853-005-6080-8
Google Scholar
[18]
Zheng, H. -Y. and M. -Z. An, Electrodeposition of Zn–Ni–Al2O3 nanocomposite coatings under ultrasound conditions. Journal of Alloys and Compounds, 2008. 459(1–2): pp.548-552.
DOI: 10.1016/j.jallcom.2007.05.043
Google Scholar
[19]
Zhong, X., et al., Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corrosion Science, 2009. 51(12): pp.2950-2958.
DOI: 10.1016/j.corsci.2009.08.031
Google Scholar
[20]
Phani, A.R., F.J. Gammel, and T. Hack, Structural, mechanical and corrosion resistance properties of Al2O3–CeO2 nanocomposites in silica matrix on Mg alloys by a sol–gel dip coating technique. Surface and Coatings Technology, 2006. 201(6): pp.3299-3306.
DOI: 10.1016/j.surfcoat.2006.07.002
Google Scholar
[21]
Avramova, I., et al., Characterization of nanocomposite CeO2–Al2O3 coatings electrodeposited on stainless steel. Composites Science and Technology, 2005. 65(11–12): pp.1663-1667.
DOI: 10.1016/j.compscitech.2005.04.005
Google Scholar
[22]
Momen, G., M. Farzaneh, and R. Jafari, Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface. Applied Surface Science, 2011. 257(15): pp.6489-6493.
DOI: 10.1016/j.apsusc.2011.02.049
Google Scholar
[23]
Arianpour, F., M. Farzaneh, and S.A. Kulinich, Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Applied Surface Science, 2013. 265(0): pp.546-552.
DOI: 10.1016/j.apsusc.2012.11.042
Google Scholar
[24]
Song, X., et al., Synthesis and characterization of MCM-41 materials assembled with CeO2 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313–314(0): pp.193-196.
DOI: 10.1016/j.colsurfa.2007.05.040
Google Scholar
[25]
Fundeanu, I., et al., Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids and Surfaces B: Biointerfaces, 2008. 64(2): pp.297-301.
DOI: 10.1016/j.colsurfb.2008.02.005
Google Scholar
[26]
Momen, G. and M. Farzaneh, A ZnO-based nanocomposite coating with ultra water repellent properties. Applied Surface Science, 2012. 258(15): pp.5723-5728.
DOI: 10.1016/j.apsusc.2012.02.074
Google Scholar
[27]
Wang, P., et al., Super-hydrophobic film prepared on zinc as corrosion barrier. Corrosion Science, 2011. 53(6): p.2080-(2086).
DOI: 10.1016/j.corsci.2011.02.025
Google Scholar
[28]
Jiang, W. -F., et al., Photooxidation of Benzene to Phenol by Al2O3-Supported Fe(III)-5-Sulfosalicylic Acid (ssal) Complex. catalyst letters, 2009. 130: pp.463-469.
DOI: 10.1007/s10562-009-9976-0
Google Scholar
[29]
Bernard, A. and M.H. Chisholm, Synthesis of core–shell (nano)particles involving TiO2, SiO2, Al2O3 and polylactide. Polyhedron, 2012. 46(1): pp.1-7.
DOI: 10.1016/j.poly.2012.07.017
Google Scholar
[30]
Han, Y., D. Gallant, and X.G. Chen, Investigation on Corrosion Behavior of the Al-B4C Metal Matrix Composite in a Mildly Oxidizing Aqueous Environment. Corrosion, 2011. 67(11): pp.115005-11.
DOI: 10.5006/1.3659505
Google Scholar
[31]
Bico, J., U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 206(1–3): pp.41-46.
DOI: 10.1016/s0927-7757(02)00061-4
Google Scholar
[32]
Cassie, A.B.D., Contact angles. Discussions of the Faraday Society, 1948. 3(0): pp.11-16.
Google Scholar
[33]
He, T., et al., Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater. Corrosion Science, 2009. 51(8): pp.1757-1761.
DOI: 10.1016/j.corsci.2009.04.027
Google Scholar
[34]
Zandi-zand, R., A. Ershad-langroudi, and A. Rahimi, Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection. Progress in Organic Coatings, 2005. 53(4): pp.286-291.
DOI: 10.1016/j.porgcoat.2005.03.009
Google Scholar
[35]
Del Grosso Destreri, M., et al., Water up-take evaluation of new waterborne and high solid epoxy coatings. Part II: electrochemical impedance spectroscopy. Progress in Organic Coatings, 1999. 37(1–2): pp.69-81.
DOI: 10.1016/s0300-9440(99)00056-9
Google Scholar
[36]
Palanivel, V., D. Zhu, and W.J. van Ooij, Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Progress in Organic Coatings, 2003. 47(3–4): pp.384-392.
DOI: 10.1016/j.porgcoat.2003.08.015
Google Scholar
[37]
Rosero-Navarro, N.C., et al., Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corrosion Science, 2008. 50(5): pp.1283-1291.
DOI: 10.1016/j.corsci.2008.01.031
Google Scholar
[38]
Montemor, M.F., et al., The synergistic combination of bis-silane and CeO2·ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008. 53(20): pp.5913-5922.
DOI: 10.1016/j.electacta.2008.03.069
Google Scholar
[39]
Gallardo, J., A. Durán, and J.J. de Damborenea, Electrochemical and in vitro behaviour of sol–gel coated 316L stainless steel. Corrosion Science, 2004. 46(4): pp.795-806.
DOI: 10.1016/s0010-938x(03)00185-9
Google Scholar