Synthesis and Characterization of CeO2-Al2O3 Nanocomposite Coating on the AA6061 Alloy

Article Preview

Abstract:

In the present study, a thick, uniform and crack-free sol-gel coating embedded with Al2O3-CeO2 nanoparticles was successfully synthesized and deposited on aluminum alloy AA6061 by spin coating method. The coating morphology was characterized by using a scanning electron microscopy coupled with electron diffraction x-ray spectrometer (SEM-EDX), an atomic force microscopy (AFM) and water contact angle measurements. FT-IR spectra were obtained using a Fourier transformation infrared spectrometer. The corrosion resistance of this coating in 3.5 wt.% NaCl solution was evaluated with electrochemical methods including potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The stability of the corrosion resistance of this coating was evaluated by immersion in 3.5 wt.% NaCl solution and by exposure to the UV radiation condition. In addition, the adhesion resistance of the coating was also assessed. SEM and AFM results showed that Al2O3-CeO2 nanoparticles dispersed uniformly in the room temperature vulcanized (RTV) silicon rubber matrix and formed a thick and crack-free coating. Both polarization and impedance results reveal that CeO2-Al2O3 nanoparticles embedded silicon rubber coating can improve the corrosion resistance of the AA6061 alloy by more than three orders of magnitude. Meanwhile, the corrosion resistance of this coating was found to be stable under immersion in 3.5 wt.% NaCl solution and UV exposure conditions. However, excessive content of CeO2 nanoparticles in the coating made the coating morphology porous and decreased the thickness of the coating, which resulted in the decrease in the corrosion resistance of the coating.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

750-762

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Association, A. and A.W. Society, Aluminum and Aluminum alloys. 1997, Miami, Florida. 119.

Google Scholar

[2] Rehim, S.S.A., H.H. Hassan, and M.A. Amin, Corrosion and corrosion inhibition of Al and some alloys in sulphate solutions containing halide ions investigated by an impedance technique. Applied Surface Science, 2002. 187(3–4): pp.279-290.

DOI: 10.1016/s0169-4332(01)01042-x

Google Scholar

[3] Corrosion of Aluminum and Aluminum Alloys. 1999, Materials Park, Ohio: ASM International. 313.

Google Scholar

[4] Osborne, J.H., Observations on chromate conversion coatings from a sol–gel perspective. Progress in Organic Coatings, 2001. 41(4): pp.280-286.

DOI: 10.1016/s0300-9440(01)00143-6

Google Scholar

[5] Gallardo, J., et al., Effect of Sintering Temperature on the Corrosion and Wear Behavior of Protective SiO2-Based Sol-Gel Coatings. Journal of Sol-Gel Science and Technology, 2003. 27(2): pp.175-183.

DOI: 10.1023/a:1023702701850

Google Scholar

[6] Jing, C. and J. Hou, Sol-gel-derived alumina/polyvinylpyrrolidone hybrid nanocomposite film on metal for corrosion resistance. Journal of Applied Polymer Science, 2007. 105(2): pp.697-705.

DOI: 10.1002/app.26074

Google Scholar

[7] Zaharescu, M., et al., SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys. Corrosion Science, 2009. 51(9): p.1998-(2005).

DOI: 10.1016/j.corsci.2009.05.022

Google Scholar

[8] Phani, A.R., et al., Enhanced corrosioon resistance by sol-gel-based ZrO2-CeO2 coatings on magnesium alloys. Materials and Corrosion, 2005. 56(2): pp.77-82.

DOI: 10.1002/maco.200403823

Google Scholar

[9] Sharma, A. and A.K. Singh, Electroless Ni-P and Ni-P-Al2O3 Nanocomposite Coatings and Their Corrosion and Wear Resistance. Journal of Materials Engineering and Performance, 2013. 22(1): pp.176-183.

DOI: 10.1007/s11665-012-0224-1

Google Scholar

[10] Poznyak, S.K., et al., Preparation and corrosion protective properties of nanostructured titania-containing hybrid sol–gel coatings on AA2024. Progress in Organic Coatings, 2008. 62(2): pp.226-235.

DOI: 10.1016/j.porgcoat.2007.12.004

Google Scholar

[11] Montemor, M.F. and M.G.S. Ferreira, Cerium salt activated nanoparticles as fillers for silane films: Evaluation of the corrosion inhibition performance on galvanised steel substrates. Electrochimica Acta, 2007. 52(24): pp.6976-6987.

DOI: 10.1016/j.electacta.2007.05.022

Google Scholar

[12] Hamdy, A.S., Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys. Materials Letters, 2006. 60(21–22): pp.2633-2637.

DOI: 10.1016/j.matlet.2006.01.049

Google Scholar

[13] Montemor, M.F. and M.G.S. Ferreira, Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates. Progress in Organic Coatings, 2008. 63(3): pp.330-337.

DOI: 10.1016/j.porgcoat.2007.11.008

Google Scholar

[14] Montemor, M.F., R. Pinto, and M.G.S. Ferreira, Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochimica Acta, 2009. 54(22): pp.5179-5189.

DOI: 10.1016/j.electacta.2009.01.053

Google Scholar

[15] Schem, M., et al., CeO2-filled sol–gel coatings for corrosion protection of AA2024-T3 aluminium alloy. Corrosion Science, 2009. 51(10): pp.2304-2315.

DOI: 10.1016/j.corsci.2009.06.007

Google Scholar

[16] Zhong, X., et al., Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy. Corrosion Science, 2008. 50(8): pp.2304-2309.

DOI: 10.1016/j.corsci.2008.05.016

Google Scholar

[17] Kobayashi, Y., T. Ishizaka, and Y. Kurokawa, Preparation of alumina films by the sol-gel method. Journal of Materials Science, 2005. 40(2): pp.263-283.

DOI: 10.1007/s10853-005-6080-8

Google Scholar

[18] Zheng, H. -Y. and M. -Z. An, Electrodeposition of Zn–Ni–Al2O3 nanocomposite coatings under ultrasound conditions. Journal of Alloys and Compounds, 2008. 459(1–2): pp.548-552.

DOI: 10.1016/j.jallcom.2007.05.043

Google Scholar

[19] Zhong, X., et al., Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corrosion Science, 2009. 51(12): pp.2950-2958.

DOI: 10.1016/j.corsci.2009.08.031

Google Scholar

[20] Phani, A.R., F.J. Gammel, and T. Hack, Structural, mechanical and corrosion resistance properties of Al2O3–CeO2 nanocomposites in silica matrix on Mg alloys by a sol–gel dip coating technique. Surface and Coatings Technology, 2006. 201(6): pp.3299-3306.

DOI: 10.1016/j.surfcoat.2006.07.002

Google Scholar

[21] Avramova, I., et al., Characterization of nanocomposite CeO2–Al2O3 coatings electrodeposited on stainless steel. Composites Science and Technology, 2005. 65(11–12): pp.1663-1667.

DOI: 10.1016/j.compscitech.2005.04.005

Google Scholar

[22] Momen, G., M. Farzaneh, and R. Jafari, Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface. Applied Surface Science, 2011. 257(15): pp.6489-6493.

DOI: 10.1016/j.apsusc.2011.02.049

Google Scholar

[23] Arianpour, F., M. Farzaneh, and S.A. Kulinich, Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Applied Surface Science, 2013. 265(0): pp.546-552.

DOI: 10.1016/j.apsusc.2012.11.042

Google Scholar

[24] Song, X., et al., Synthesis and characterization of MCM-41 materials assembled with CeO2 nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313–314(0): pp.193-196.

DOI: 10.1016/j.colsurfa.2007.05.040

Google Scholar

[25] Fundeanu, I., et al., Polyacrylamide brush coatings preventing microbial adhesion to silicone rubber. Colloids and Surfaces B: Biointerfaces, 2008. 64(2): pp.297-301.

DOI: 10.1016/j.colsurfb.2008.02.005

Google Scholar

[26] Momen, G. and M. Farzaneh, A ZnO-based nanocomposite coating with ultra water repellent properties. Applied Surface Science, 2012. 258(15): pp.5723-5728.

DOI: 10.1016/j.apsusc.2012.02.074

Google Scholar

[27] Wang, P., et al., Super-hydrophobic film prepared on zinc as corrosion barrier. Corrosion Science, 2011. 53(6): p.2080-(2086).

DOI: 10.1016/j.corsci.2011.02.025

Google Scholar

[28] Jiang, W. -F., et al., Photooxidation of Benzene to Phenol by Al2O3-Supported Fe(III)-5-Sulfosalicylic Acid (ssal) Complex. catalyst letters, 2009. 130: pp.463-469.

DOI: 10.1007/s10562-009-9976-0

Google Scholar

[29] Bernard, A. and M.H. Chisholm, Synthesis of core–shell (nano)particles involving TiO2, SiO2, Al2O3 and polylactide. Polyhedron, 2012. 46(1): pp.1-7.

DOI: 10.1016/j.poly.2012.07.017

Google Scholar

[30] Han, Y., D. Gallant, and X.G. Chen, Investigation on Corrosion Behavior of the Al-B4C Metal Matrix Composite in a Mildly Oxidizing Aqueous Environment. Corrosion, 2011. 67(11): pp.115005-11.

DOI: 10.5006/1.3659505

Google Scholar

[31] Bico, J., U. Thiele, and D. Quéré, Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 206(1–3): pp.41-46.

DOI: 10.1016/s0927-7757(02)00061-4

Google Scholar

[32] Cassie, A.B.D., Contact angles. Discussions of the Faraday Society, 1948. 3(0): pp.11-16.

Google Scholar

[33] He, T., et al., Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater. Corrosion Science, 2009. 51(8): pp.1757-1761.

DOI: 10.1016/j.corsci.2009.04.027

Google Scholar

[34] Zandi-zand, R., A. Ershad-langroudi, and A. Rahimi, Silica based organic–inorganic hybrid nanocomposite coatings for corrosion protection. Progress in Organic Coatings, 2005. 53(4): pp.286-291.

DOI: 10.1016/j.porgcoat.2005.03.009

Google Scholar

[35] Del Grosso Destreri, M., et al., Water up-take evaluation of new waterborne and high solid epoxy coatings. Part II: electrochemical impedance spectroscopy. Progress in Organic Coatings, 1999. 37(1–2): pp.69-81.

DOI: 10.1016/s0300-9440(99)00056-9

Google Scholar

[36] Palanivel, V., D. Zhu, and W.J. van Ooij, Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Progress in Organic Coatings, 2003. 47(3–4): pp.384-392.

DOI: 10.1016/j.porgcoat.2003.08.015

Google Scholar

[37] Rosero-Navarro, N.C., et al., Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corrosion Science, 2008. 50(5): pp.1283-1291.

DOI: 10.1016/j.corsci.2008.01.031

Google Scholar

[38] Montemor, M.F., et al., The synergistic combination of bis-silane and CeO2·ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochimica Acta, 2008. 53(20): pp.5913-5922.

DOI: 10.1016/j.electacta.2008.03.069

Google Scholar

[39] Gallardo, J., A. Durán, and J.J. de Damborenea, Electrochemical and in vitro behaviour of sol–gel coated 316L stainless steel. Corrosion Science, 2004. 46(4): pp.795-806.

DOI: 10.1016/s0010-938x(03)00185-9

Google Scholar