Early Corrosion Behavior of Pipeline Steel Containing 1% Cr in Sea Water Environment

Article Preview

Abstract:

The corrosion behavior of pipeline steel containing 1%Cr is studied by using immersion experiment. The corrosion rust is characteried with macroscopic/microscopic surface morphology, corrosion kinetics and corrosion phases. The results demonstrate that the main corrosion products are lepidocrocite and goethite, Cr-rich compound consists of the inner layer. The corrosion process could be divided into three stages. At stage 1, the corrosion rate decreases fast, and the distributed corrosion products are formed. At stage 2, the granular corrosion products appear on coupons surface gradually, and a plain corrosion rate is obtained. At stage 3, a compact and dense corrosion layer attaches to coupons surface, and corrosion rate decreases mildly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

773-778

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.U. Renner, A. Stierle, H. Dosch, Initial corrosion observed on the atomic scale, Nature. 439 (2006) 707-710.

DOI: 10.1038/nature04465

Google Scholar

[2] Q. Hu, Y. B. Qiu, X. P. Guo, J. Y. Huang, Crevice corrosion of Q235 carbon steels in a solution of NaHCO3 and NaCl, Corros. Sci. 52 (2010) 1205-1212.

DOI: 10.1016/j.corsci.2010.01.006

Google Scholar

[3] Z. H. Jin, H. H. Ge, W. W. Lin, Y. W. Lin, Y. W. Zong, S. J. Liu, J. M. Shi, Corrosion behavior of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution, Appl. Surf. Sci. 322 (2014) 47-56.

DOI: 10.1016/j.apsusc.2014.09.205

Google Scholar

[4] Q. Hu, G. A. Zhang, Y. B. Qiu, X. P. Guo, The crevice corrosion behaviour of stainless steel in sodium chloride solution, Corros. Sci. 53 (2011) 4065-4072.

DOI: 10.1016/j.corsci.2011.08.012

Google Scholar

[5] D. Fuente, I. Díaz, J. Simancas, B. Chico, M. Morcillo, Long-term atomspheric corrosion of mild steel, Corros. Sci. 53 (2011) 604-617.

DOI: 10.1016/j.corsci.2010.10.007

Google Scholar

[6] Y. T. Ma, Y. Li, F. H Wang, The effect of b-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment, Mater. Chem. Physi, 112 (2008) 844-852.

DOI: 10.1016/j.matchemphys.2008.06.066

Google Scholar

[7] J. G. Castaño, C. A. Restrepo, E. A. Agudelo, E. Correa, F. Echeverría, Atomspheric corrosion of carbon steel in Colombia, Corros. Sci. 52 (2010) 216-223.

DOI: 10.1016/j.corsci.2009.09.006

Google Scholar

[8] Q. C. Zhang, J. S. Wu, J. J. Wang, W. L. Zheng, J. G. Chen, A. B. Li, Corrosion behavior of weathering steel in marine atmosphere, Mater. Chem. Physi. 77 (2002) 603-608.

DOI: 10.1016/s0254-0584(02)00110-4

Google Scholar

[9] H. Canoe, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, D. Fuente, Characterization of corrosion products formed on Ni2. 4wt%-Cu0. 5wt%-Cr0. 5wt% weathering steel exposed in marine atmospheres', Corros. Sci. 87 (2014) 438-451.

DOI: 10.1016/j.corsci.2014.07.011

Google Scholar

[10] R. E. Melchers, R. Jeffrey, Early corrosion of mild steel in sea water, Corros. Sci. 47 (2005) 1678-1693.

DOI: 10.1016/j.corsci.2004.08.006

Google Scholar

[11] Y. T. Ma, H. Li, F. H. Wang, The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment, Corros. Sci. 52 (2010) 1796-1800.

DOI: 10.1016/j.corsci.2010.01.022

Google Scholar

[12] Y. T. Ma, H. Li, F. H. Wang, Corrosion of low carbon steel in atmospheric environments of different chloride content, Corros. Sci. 51 (2009) 997-1006.

DOI: 10.1016/j.corsci.2009.02.009

Google Scholar

[13] Y. H Qian, C. H. Ma, D. Niu, J. J Xu, M. S. Li, Influence of alloyed chromium on the atmospheric corrosion resistance of weathering steels, Corros. Sci. 74 (2013) 424-429.

DOI: 10.1016/j.corsci.2013.05.008

Google Scholar

[14] D. Yoreo, Crystal nucleation more than one pathway, Nature. Mater. 12 (2013) 284-285.

Google Scholar