Influence of Thermo-Mechanical Treatments on Structure and Mechanical Properties of High-Mn Steel

Article Preview

Abstract:

The aim of this paper is to determine the high-manganese austenite propensity to twinning induced by the cold working and its effect on structure and mechanical properties, and especially the strain energy per unit volume of new-developed high-manganese Fe – Mn – (Al, Si) investigated steel, containing about 24,5 % of manganese, 1% of silicon, 3 % of aluminium and microadditions Nb and Ti with various structures after their heat- and thermo-mechanical treatments. The new-developed high-manganese Fe – Mn – (Al, Si) steel provide an extensive potential for automotive industries through exhibiting the twinning induced plasticity (TWIP) mechanisms. TWIP steel not only show excellent strength, but also have excellent formability due to twinning, thereby leading to excellent combination of strength, ductility, and formability over conventional dual phase steels or transformation induced plasticity (TRIP) steels. Results obtained for high-manganese austenitic steel with the properly formed structure and properties in the thermo-mechanical processes indicate the possibility and purposefulness of their employment for constructional elements of vehicles, especially of the passenger cars to take advantage of the significant growth of their strain energy per unit volume which guarantee reserve of plasticity in the zones of controlled energy absorption during possible collision resulting from activation of twinning induced by the cold working as the fracture counteraction factor, which may result in significant growth of the passive safety of these vehicles' passengers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-119

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Frommeyer, U. Brüx, K. Brokmeier, R. Rablbauer, Development, microstructure and properties of advanced high-strength and supraductile light-weight steels based on Fe-Mn-Al-Si-(C), Proceedings of the 6th International Conference on Processing and Manufacturing of Advanced Materials, Thermec'2009, (2009).

DOI: 10.1002/srin.200606440

Google Scholar

[2] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43 (2003) 438-446.

DOI: 10.2355/isijinternational.43.438

Google Scholar

[3] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application, International Journal of Plasticity 16 (2000) 1391-1409.

DOI: 10.1016/s0749-6419(00)00015-2

Google Scholar

[4] U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer, A. Weise, Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels, Steel Research 73 (2002) 294-298.

DOI: 10.1002/srin.200200211

Google Scholar

[5] J. Kliber, T. Kursa, I. Schindler, The influence of hot rolling on mechanical properties of high-Mn TWIP steels, Proceedings of the 3rd International Conference on Thermo-mechanical Processing of Steels - TMP'2008, Padua, 2008 (CD-ROM).

Google Scholar

[6] O. Kwon, K. Lee, G. Kim, K. Chin, New trends in advanced high strength steel developments for automotive application, Materials Science Forum 638-642 (2010) 136-141.

DOI: 10.4028/www.scientific.net/msf.638-642.136

Google Scholar

[7] E. Mazancová, Z. Jonšta, K. Mazanec, Structural metallurgy properties of high manganese Fe-Mn-Al-C alloy, Hutnicke Listy 61 (2) (2008) 60-63.

Google Scholar

[8] M. Krupiński B. Krupińska K. Labisz Z. Rdzawski W. Borek, Influence of cooling rate on crystallisation kinetics on microstructure of cast zinc alloys, Journal of Thermal Analysis and Calorimetry 118 (2) (2014) 1361-1367.

DOI: 10.1007/s10973-014-4174-8

Google Scholar

[9] L.A. Dobrzański, M. Krupiński, K. Labisz, B. Krupińska, A. Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum 638-642 (2010) 475-480.

DOI: 10.4028/www.scientific.net/msf.638-642.475

Google Scholar

[10] T. Tański, Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 59/3 (2013) 165-174.

DOI: 10.5545/sv-jme.2012.522

Google Scholar

[11] A. Grajcar, R. Kuziak, Softening kinetics in Nb-microalloyed TRIP steels with increased Mn content, Advanced Materials Research 314-316 (2011) 119-122.

DOI: 10.4028/www.scientific.net/amr.314-316.119

Google Scholar

[12] M. Opiela, A. Grajcar, Hot deformation behavior and softening kinetics of Ti-V-B microalloyed steels, Archives of Civil and Mechanical Engineering 12 (3) (2012) 327-333.

DOI: 10.1016/j.acme.2012.06.003

Google Scholar

[13] L.A. Dobrzanski, W. Sitek, M. Krupinski, J. Dobrzanski, Computer aided method for evaluation of failure class of materials working in creep conditions, Journal Of Materials Processing Technology 157 (2004) 102-106.

DOI: 10.1016/j.jmatprotec.2004.09.020

Google Scholar

[14] W. Ozgowicz, K. Labisz, Analysis of the state of the fine-dispersive precipitations in the structure of high strength steel Weldox 1300 by means of electron diffraction, Journal of Iron and Steel Research International 18/1 (2011) 135-142.

Google Scholar

[15] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638 (2010) 3224-3229.

DOI: 10.4028/www.scientific.net/msf.638-642.3224

Google Scholar

[16] L.A. Dobrzański, W. Borek, Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12 (3) (2012) 299-304.

DOI: 10.1016/j.acme.2012.06.016

Google Scholar

[17] L.A. Dobrzański, W. Borek, Hot-rolling of advanced high-manganese C-Mn-Si-Al steels, Materials Science Forum 706/709 (2012) 2053-(2058).

DOI: 10.4028/www.scientific.net/msf.706-709.2053

Google Scholar

[18] L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels, Materials Science Forum 654-656 (2010) 266-269.

DOI: 10.4028/www.scientific.net/msf.654-656.266

Google Scholar

[19] A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8 (4) (2008) 29-38.

DOI: 10.1016/s1644-9665(12)60119-8

Google Scholar

[20] W. Borek, M. Czaja, K. Labisz, T. Tański, M. Krupiński, S. Rusz, High Manganese Austenitic X6MnSiAlNbTi26-3-3 Steel - Characteristic, Structures and Properties, Advanced Materials Research 1036 (2014) 18-23.

DOI: 10.4028/www.scientific.net/amr.1036.18

Google Scholar

[21] L.A. Dobrzański, M. Czaja, W. Borek, K. Labisz, T. Tański, Influence of hot-working conditions on a structure of X11MnSiAl17-1-3 steel, Advanced Materials Research 1036 (2014) 122-127.

DOI: 10.4028/www.scientific.net/amr.1036.122

Google Scholar

[22] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Mechanical properties of high-manganese austenitic TWIP-type steel, Materials Science Forum 783-786 (2014) 27-32.

DOI: 10.4028/www.scientific.net/msf.783-786.27

Google Scholar

[23] L.A. Dobrzański, W. Borek, J. Mazurkiewicz, Structure and mechanical properties of high-manganese steels, Comprehensive Materials Processing 2 (2014) 199+218.

DOI: 10.1016/b978-0-08-096532-1.00216-8

Google Scholar