[1]
D. Sivaramakrishna , D. Sreekanth , V. Himabindu , Y. Anjaneyulu. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora . Renewable Energy Vol. 34 (2009), pp.937-940.
DOI: 10.1016/j.renene.2008.04.016
Google Scholar
[2]
Tao Y, Chen Y, Wu Y, He Y, Zhou Z. High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. International Journal of Hydrogen Energy Vol. 31(2007), pp.200-206.
DOI: 10.1016/j.ijhydene.2006.06.034
Google Scholar
[3]
David B, Levina B, Islamc R, Cicekc N, Sparlingd R. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. International Journal of Hydrogen Energy Vol. 31 (2006), pp.1496-1503.
DOI: 10.1016/j.ijhydene.2006.06.015
Google Scholar
[4]
Nath K, Das D. Hydrogen from biomass. Current Sci Vol. 85 (2003), pp.265-271.
Google Scholar
[5]
Idania Valdez-Vazquez, Hector M. Poggi-Varaldo. Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews Vol. 13 (2009), pp.1000-1013.
DOI: 10.1016/j.rser.2008.03.003
Google Scholar
[6]
Prawit Kongjan, Booki Min, Irini Angelidaki. Biohydrogen production from xylose at extreme thermophilic temperatures(70°C) by mixed culture fermentation. Water res. Vol. 43(2009), pp.1414-1424.
DOI: 10.1016/j.watres.2008.12.016
Google Scholar
[7]
Yohei Akutsu, Yu-You Li, Hideki Harada, Han-Qing Yu. Effects of temperature and substrate concentration on biological hydrogen production from starch. International Journal of Hydrogen Energy Vol. 34(2009), pp.2558-2566.
DOI: 10.1016/j.ijhydene.2009.01.048
Google Scholar
[8]
Monika T. Skonieczny, Viviane Yargeau. Biohydrogen production from wastewater by Clostridium beijerinckii: Effect of pH and substrate concentration. International Journal of Hydrogen Energy (2009), pp.1-7.
DOI: 10.1016/j.ijhydene.2009.01.044
Google Scholar
[9]
Biohydrogen Production from Cattle Wastewater by Enriched Anaerobic Mixed Consortia: Influence of Fermentation Temperature and pH. Journal of bioscience and bio engineering Vol. 106 (2008), pp.80-87.
DOI: 10.1263/jbb.106.80
Google Scholar
[10]
Jeong Ok Kim, Yong Hwan Kim, Jeong Yong Ryu. Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochemistry Vol. 40, (2005), pp.1331-1337.
DOI: 10.1016/j.procbio.2004.06.008
Google Scholar
[11]
Zhang Y, Shen J. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy Vol. 43 (2005), pp.1258-1265.
Google Scholar
[12]
Mu Y, Han-Quing Y, Wang G. Evaluation of three methods for enriching hydrogen-producing cultures from anaerobic sludge. Enzyme Microb Technol Vol. 40(2006), pp.947-953.
DOI: 10.1016/j.enzmictec.2006.07.033
Google Scholar
[13]
Thomas A. Kotsopoulos, Ioannis A. Fotidis, Nikolaos Tsolakis. Gerassimos G. Martzopoulos. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70°C). Biomass and bioenergy Vol. 33 (2009).
DOI: 10.1016/j.biombioe.2009.05.001
Google Scholar
[14]
Idania Valdez-Vazquez, Hector M. Poggi-Varaldo. Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews Vol. 13 (2009), pp.1000-1013.
DOI: 10.1016/j.rser.2008.03.003
Google Scholar
[15]
Davila-Vazquez G, Mondrago´n FA, Rodrı´guez AL, Flores ER. Fermentative hydrogen production in batch experiments using lactose, cheese, whey and glucose: influence of initial substrate concentration and pH. Int J Hydrogen Energy Vol. 33 (2008).
DOI: 10.1016/j.ijhydene.2008.06.065
Google Scholar
[16]
Chunmei Pan, Shufang Zhang, Yaoting Fan, Hongwei Hou. Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int J Hydrogen Energy (2009), pp.1-7.
DOI: 10.1016/j.ijhydene.2009.04.023
Google Scholar
[17]
Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechol Bioeng Vol. 63 (2000), pp.1361-1367.
DOI: 10.1002/(sici)1097-0290(20000505)68:3<269::aid-bit5>3.0.co;2-t
Google Scholar