Use of Combined NaOH-Microwave Pretreatment for Enhancing Mesophilic Anaerobic Digestibility of Thickened Waste Activated Sludge

Article Preview

Abstract:

A combined NaOH-microwave (MW) pretreatment process was studied in order to investigate the effects of NaOH-MW pretreated thickened waste activated sludge (TWAS) on anaerobic digestion. In the NaOH-MW pretreatment studies, Uniform design was successfully applied to determine the relationship of TWAS solubilization to environmental conditions (NaOH dose, target temperature, and MW holding time) and to establish the mathematical model describing the solubilization degree to changes in these variables. The maximum solubilization ratio (85.1%) of volatile suspended solids (VSS) could be achieved at 210°C with 0.2 g-NaOH/g-SS and 35 min holding time. The biochemical methane potential (BMP) tests showed that all digesters fed with pretreated TWAS improved the methane production compared to control system, and the optimal conditions, at 170°C with 0.05 g-NaOH/g-SS and 1 min holding time, were suggested for NaOH-MW pretreatment of TWAS. In spite of the increase in the soluble chemical oxygen demand concentration and decrease in the dewaterability of digested sludge, the semi-continuous reacter fed with the pretreated TWAS without neutralization was stable and gave higher organics reductions and methane yields compared to the control.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 113-116)

Pages:

459-468

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.Z. Chi, S.T. Zhang and Y.Y. Li: J. Environ. Conserv. Eng. (in Japanese) Vol. 38 (2009), p.45.

Google Scholar

[2] L. Appels, J. Baeyens, J. Degrève and R. Dewil: Prog. Energy Combust. Sci. Vol. 34 (2008), p.755.

Google Scholar

[3] M. Weemaes, H. Grootaerd, F. Simoens and W. Verstraete: Water Res. Vol. 34 (2000), p.2330.

Google Scholar

[4] Y.Y. Li and T. Noike: Water Sci. Technol. Vol. 26 (1992), p.857.

Google Scholar

[5] T. Kobayashi, Y.Y. Li, H. Harada, H. Yasui and T. Noike: Water Sci. Technol. Vol. 59 (2009), p.185.

Google Scholar

[6] S.K. Khanal, D. Grewell, S. Sung and J. Van Leeuwen: Crit. Rev. Environ. Sci. Technol. Vol. 37 (2007), p.277.

Google Scholar

[7] M. Climent, I. Ferrer, M. d.M. Baeza, A. Artola, F. Vázquez and X. Font: Chem. Eng. J. Vol. 133 (2007), p.335.

Google Scholar

[8] L. Feng, H. Wang, Y. Chen and Q. Wang: Bioresour. Technol. Vol. 100 (2009), p.44.

Google Scholar

[9] Z. Wang, W. Wang, X. Zhang and G. Zhang: J. Hazard. Mater. Vol. 162 (2009), p.799.

Google Scholar

[10] A. Valo, H. Carrere and J.P. Delgenes: J. Chem. Technol. Biotechnol. Vol. 79 (2004), p.1197.

Google Scholar

[11] M. Barjenbruch and O. Kopplow: Adv. Environ. Res. Vol. 7 (2003), p.715.

Google Scholar

[12] D.A. Jones, T.P. Lelyveld, S.D. Mavrofidis, S.W. Kingman and N.J. Miles: Resour. Conserv. Recycl. Vol. 34 (2002), p.75.

Google Scholar

[13] C. Eskicioglu, K.J. Kennedy and R.L. Droste: Desalination Vol. 248 (2009), p.279.

Google Scholar

[14] W. Qiao, W. Wang, R. Xun, W. Lu and K. Yin: J. Mater. Sci. Vol. 43 (2008), p.2431.

Google Scholar

[15] C. Eskicioglu, N. Terzian, K.J. Kennedy, R.L. Droste and M. Hamoda: Water Res. Vol. 41 (2007), p.2457.

DOI: 10.1016/j.watres.2007.03.008

Google Scholar

[16] B.E. Rittman and P.L. McCarty: Environmental Biotechnology: Principles and Applications (McGraw-Hill Companies,Inc., Boston 2001).

Google Scholar

[17] K.T. Fang and C.X. Ma: Orthogonal and Uniform Experimental Design (Science and Technology Press, Beijing 2001).

Google Scholar

[18] APHA-AWWA-WEF: Standard Methods for the Examination of Water and Wastewater (APHA, Washington DC 1998).

Google Scholar

[19] Y. Akutsu, D. -Y. Lee, Y.Z. Chi, Y.Y. Li, H. Harada and H.Q. Yu: Int. J. Hydrogen Energy Vol. 34 (2009), p.5061.

Google Scholar

[20] M. DuBois, K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith: Anal. Chem. Vol. 28 (1956), p.350.

Google Scholar

[21] O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall: J. Biol. Chem. Vol. 193 (1951), p.265.

Google Scholar

[22] E.G. Bligh and W.J. Dyer: Can. J. Physiol. Pharmacol. Vol. 37 (1959), p.911.

Google Scholar

[23] G.Q. Yin, K.V. Lo and P.H. Liao: J. Environ. Eng. Sci. Vol. 7 (2008), p.115.

Google Scholar

[24] C. Eskicioglu, K.J. Kennedy and R.L. Droste: Water Sci. Technol. Vol. 57 (2008), p.311.

Google Scholar

[25] E. Neyens and J. Baeyens: J. Hazard. Mater. Vol. 98 (2003), p.51.

Google Scholar

[26] C. Bougrier, J.P. Delgenès and H. Carrère: Biochem. Eng. J. Vol. 34 (2007), p.20.

Google Scholar

[27] C. Eskicioglu, K.J. Kennedy and R.L. Droste: Water Res. Vol. 40 (2006), p.3725.

Google Scholar

[28] V. Penaud, J.P. Delgenes and R. Moletta: J. Environ. Eng. -Asce Vol. 126 (2000), p.397.

Google Scholar

[29] J. Dwyer, D. Starrenburg, S. Tait, K. Barr, D.J. Batstone and P. Lant: Water Res. Vol. 42 (2008), p.4699.

DOI: 10.1016/j.watres.2008.08.019

Google Scholar

[30] S.M. Hong, J.K. Park, N. Teeradej, Y.O. Lee, Y.K. Cho and C.H. Park: Water Environ. Res. Vol. 78 (2006), p.76.

Google Scholar

[31] Y. Han, Y.Y. Li, Y.X. Ren and F. Yan: Acta Sci. Circumst. (in Chinese) Vol. 27 (2007), p.1174.

Google Scholar

[32] E. Sánchez, R. Borja, L. Travieso, A. Martín and M.F. Colmenarejo: Bioresour. Technol. Vol. 96 (2005), p.335.

Google Scholar

[33] M.A. Schoen, D. Sperl, M. Gadermaier, M. Goberna, I. Franke-Whittle, H. Insam, J. Ablinger and B. Wett: Bioresour. Technol. Vol. 100 (2009), p.5648.

DOI: 10.1016/j.biortech.2009.06.033

Google Scholar

[34] L.M. Shao, P.P. He, G.H. Yu and P.J. He: J. Environ. Sci. -China Vol. 21 (2009), p.83.

Google Scholar