Theoretical Study on Structural and Electronic Properties of EDOT:SS Oligomers Complex

Article Preview

Abstract:

In this paper, we have reported a theoretical study of the geometric and electronic structures of EDOT:SS oligomers based on semi-empirical Austin model1 (AM1) method and density functional theory at B3LYP/3-21G* level. The effects of polymer chain length of both EDOT and SS on structural and electronic properties including bond length, bond angle, binding distance, charge, the highest occupied orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and energy gap have been studied from the optimized oligomers which were built by varying repeating unit of monomer as n = 1, 2, 3 and 4. The results show that AM1 is not appropriate for geometry optimization of EDOT:SS system comparing to B3LYP/3-21G* level. The binding distance between H atom on EDOT and O atom on SS tends to close together with the average distance of 2.21 Å. The most positive charges locate at sulfur atoms on EDOT and EDOT:SS. The electrical conductivity of EDOT, SS and EDOT:SS increases when polymer chain is extended.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-127

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Ouyang, Secondary doping methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices, Displays. 34 (2013) 423–436.

DOI: 10.1016/j.displa.2013.08.007

Google Scholar

[2] J. Kawahara, P.A. Ersman, I. Engquist, M. Berggren, Improving the color switch contrast in PEDOT: PSS-based electrochromic displays, Org. Electron. 13 (2012) 469–474.

DOI: 10.1016/j.orgel.2011.12.007

Google Scholar

[3] A. Bozkurt, A. Lal, Low-cost flexible printed circuit technology based microelectrode array for extracellular stimulation of the invertebrate locomotory system, Sensor Actuat A-Phys. 169 (2011) 89– 97.

DOI: 10.1016/j.sna.2011.05.015

Google Scholar

[4] A.C. Hebler, G.C. Schmidt, H. Kemp, K. Reuter, M. Hambsch, M. Bellman, Three-dimensional integrated circuit using printed electronics, Org. Electron. 12 (2011) 419–423.

DOI: 10.1016/j.orgel.2010.12.010

Google Scholar

[5] F.L.M. Sam, M.A. Razali, K.D.G. I. Jayawardena, C.A. Mills, L.J. Rozanski, M.J. Beliatis, S. R.P. Silva, Silver grid transparent conducting electrodes for organic light emitting diodes, Org. Electron. 15 (2014) 3492–3500.

DOI: 10.1016/j.orgel.2014.09.036

Google Scholar

[6] S. Ouyang, Y. Xie, D. Zhu, X. Xu, D. Wang, T. Tan, H.H. Fong, Photolithographic patterning of PEDOT: PSS with a silver interlayer and its application in organic light emitting diodes, Org. Electron. 15 (2014) 1822–1827.

DOI: 10.1016/j.orgel.2014.05.004

Google Scholar

[7] E. Nasybulin, S. Wei, I. Kymissis, K. Levon, Effect of solubilizing agent on properties of poly(3, 4-ethylenedioxythiophene) (PEDOT) electrodeposited from aqueous solution, Electrochim. Acta. 78 (2012) 638– 643.

DOI: 10.1016/j.electacta.2012.06.083

Google Scholar

[8] S.H. Eoma, S. Senthilarasu, P. Uthirakumar , S. C. Yoon, J. Lim, C. Lee, H. S. Lim, J. Lee, S.H. Lee, Polymer solar cells based on inkjet-printed PEDOT: PSS layer, Org. Electron. 10 (2009) 536–542.

DOI: 10.1016/j.orgel.2009.01.015

Google Scholar

[9] T. Yamashita, S. Takamatsu, K. Miyake, T. Itoh, Fabrication and evaluation of a conductive polymer coated elastomer contact structure for woven electronic textile, Sensor Actuat A-Phys. 195 (2013) 213– 218.

DOI: 10.1016/j.sna.2012.09.002

Google Scholar

[10] D.M. Heinze J, G. Hey wang, F. Jonas, Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes, J. Electroanal. Chem. 369 (1994) 87.

Google Scholar

[11] Q. Pei, G. Zuccarello, M. Ahskog, O. Inganas, Electrochromic and highly stable poly(3, 4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue, Polymer. 35 (1994) 1347-1351.

DOI: 10.1016/0032-3861(94)90332-8

Google Scholar

[12] R. Kiebooms, A. Aleshin, K. Hutchson, F. Wudl, Thermal and Electromagnetic Behavior of Doped Poly(3, 4-ethylenedioxythiophene) Films, J. phy. Chem. B. 101 (1997) 11037-11039.

DOI: 10.1021/jp9720101

Google Scholar

[13] F.A.R. Silva, M.J.A. Sales, R.S. Angelica, E.R. Maia, A.M. Ceschin, Characterization of the PEDOT: PSS/KDP mixture on a flexible substrates and theuse in pressure sensing devices, Appl. Surf. Sci. 257 (2011) 8594– 8599.

DOI: 10.1016/j.apsusc.2011.05.023

Google Scholar

[14] A. Lenz, H. Kariis, A. Pohl, P. Persson, L. Ojamae, The electronic structure and reflectivity of PEDOT: PSS from density functional theory, Chem. Phys. 384 (2011) 44–51.

DOI: 10.1016/j.chemphys.2011.05.003

Google Scholar

[15] A. Dkhissi, D. Beljonne, R. Lazzaroni, Atomic scale modeling of interfacial structure of PEDOT/PSS, Synth. Met. 159 (2009) 546–549.

DOI: 10.1016/j.synthmet.2008.11.022

Google Scholar

[16] S. Kirchmeyer and K. Reuter, Scientific importance, properties and growing applications of poly(3, 4-ethylenedioxythiophene), J. Mater. Chem. 2005, 15, 2077–(2088).

DOI: 10.1039/b417803n

Google Scholar

[17] Y. Seekaew, S. Lokavee, D. Phokharatkul, A. Wisitsoraat, T. Kerdcharoen, C. Wongchoosuk, Low-Cost and Flexible Printed Graphene–PEDOT: PSS Gas Sensor for Ammonia Detection, Org. Electron. 15 (2014) 2971–2981.

DOI: 10.1016/j.orgel.2014.08.044

Google Scholar

[18] M.J.S. Dewar, E.G. Zoebish, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, J. Am. Chem. Soc. 107 (1985) 3902-3909.

DOI: 10.1021/ja00299a024

Google Scholar

[19] C.C.J. Roothan, New Developments in Molecular Orbital Theory, Rev. Mod. Phys. 23 (1951) 69-89.

Google Scholar

[20] Y. Kumeda, Y. Fukuhiro, T. Taketsugu, T. Hiramo, Theoretical study of nanotube growth in terms of frontier density distribution, Chem. Phys. Lett. 333 (2001) 29-35.

DOI: 10.1016/s0009-2614(00)01322-1

Google Scholar

[21] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347-1363.

DOI: 10.1002/jcc.540141112

Google Scholar

[22] C. Aleman, E. Armelin, J.I. Iribarren, F. Liesa, M. Laso, J. Casanovas, Structural and electronic properties of 3, 4-ethylenedioxythiophene, 3, 4-ethylenedisulfanylfurane and thiophene oligomers: A theoretical investigation, Synth. Met. 149 (2005).

DOI: 10.1016/j.synthmet.2004.12.012

Google Scholar

[23] C. Wongchoosuk, A. Udomvech, T. Kerdcharoen, The geometrical and electronic structures of open-end fully functionalized single-walled carbon nanotubes, Curr. Appl. Phys. 9 (2009) 352–358.

DOI: 10.1016/j.cap.2008.03.003

Google Scholar