The Electron-Hole Interactions in Si Hydrogenate Nanocrystals: Tight-Binding Theory

Article Preview

Abstract:

Theory of electronic and optical properties of excitonic states confining in Si nanocrystals is presented. The electron and hole states are numerically computed using the atomistic empirical tight-binding Hamiltonian including the spin-orbit coupling together with the first nearest-neighboring interaction. We theoretically study the electron-hole interactions in spherical silicon hydrogenated nanocrystals by incorporating coulomb and exchange interaction into the empirical tight-binding model. The comparisons of coulomb and exchange energies with empirical pseudopotential method (EPM), tight-binding method (TB), effective-mass approximation (EMA) and ab initio calculations are quantitatively realized. Finally the energies of the excitonic ground states obtained from diagonalizing the tight-binding configuration-interaction scheme are in a good agreement with other theoretical and experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-116

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum, Silicon Nanocrystals: Fundamental Theory and Implications for Stimulated Emission, Advances in Optical Technologies. 1 (2008) 1-32.

DOI: 10.1155/2008/279502

Google Scholar

[2] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Applied Physics Letter. 56 (1990) 2379.

DOI: 10.1063/1.102921

Google Scholar

[3] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Optical gain in silicon nanocrystals, Nature. 408 (1990) 440-444.

DOI: 10.1038/35044012

Google Scholar

[4] D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Optical properties of silicon nanocrystals, Physica Status Solidi. B. 215 (1990) 871-932.

DOI: 10.1002/(sici)1521-3951(199910)215:2<871::aid-pssb871>3.0.co;2-9

Google Scholar

[5] O. Serdar, James R. Chelikowsky, and Steven G. Louie, Quantum Confinement and Optical Gaps in Si Nanocrystals, Phys. Rev. Lett. 79 (2005) 1770-1773.

DOI: 10.1103/physrevlett.79.1770

Google Scholar

[6] C. Bulutay. Interband, intraband, and excited-state direct photon absorption of silicon and germanium nanocrystals embedded in a wide band-gap lattice, Phys. Rev. B. 76 (2007) 205321-205334.

DOI: 10.1103/physrevb.76.205321

Google Scholar

[7] K. Leung, and K. B. Whaley, Electron-hole interactions in silicon nanocrystals, Phys. Rev. B. 56 (1997) 7455-7468.

DOI: 10.1103/physrevb.56.7455

Google Scholar

[8] S. Lee, L. Jonsson, J. W. Wilkins, G. W. Bryant, and G. Klimeck, Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions, Phys. Rev. B. 63 (2001) 195318-195330.

DOI: 10.1103/physrevb.63.195318

Google Scholar

[9] J. Thingna, B. R. Prasad, and S. Auluck, Photo-absorption spectra of small hydrogenated silicon clusters using the time-dependent density functional theory, Physics and Chemistry of Solids. 72 (2011) 1096-1111.

DOI: 10.1016/j.jpcs.2011.06.011

Google Scholar

[10] A. Franceschetti, and A. Zunger, Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots, Phys. Rev. Lett. 78 (1997) 915-918.

DOI: 10.1103/physrevlett.78.915

Google Scholar

[11] F. A. Reboredo, A. Franceschetti, and A. Zunger, Dark excitons due to direct Coulomb interactions in silicon quantum dots, Phys. Rev. B. 61 (2000) 13073-13087.

DOI: 10.1103/physrevb.61.13073

Google Scholar

[12] F. A. Reboredo, A. Franceschetti, and A. Zunger, Excitonic transitions and Exchange Spliting in Si Quantum Dots, Appl. Phys. Lett. 75 (1999) 2972.

DOI: 10.1063/1.125205

Google Scholar

[13] M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen, Phys. Rev. Lett. 82 (1999) 197-200.

DOI: 10.1103/physrevlett.82.197

Google Scholar

[14] I. Vasiliev, Optical excitations in small hydrogenated silicon clusters: comparison of theory and experiment, phys. stat. sol. (b). 239 (2003) 19-25.

DOI: 10.1002/pssb.200303242

Google Scholar

[15] P. Vogl, H. P. Hjalmarson, and J. D. Dow, A semi-empirical tight-binding theory of the electronic structure of semiconductors, J. Phys. Chem. Solids. 44 (1983) 365-378.

DOI: 10.1016/0022-3697(83)90064-1

Google Scholar

[16] A. Miranda, R. Vazquez, A. Diaz-Mendez, and M. Cruz-Irisson, Optical matrix elements in tight-binding approach of hydrogenated Si nanowires, Microelectronics Journal. 40 (2009) 456-458.

DOI: 10.1016/j.mejo.2008.06.018

Google Scholar

[17] M. Zielinski, M. Korkusinski, and P. Hawrylak, Atomistic tight-binding theory of multiexciton complexes in a self-assembled InAs quantum dot, Phys. Rev. B. 81 (2010) 085301-085312.

DOI: 10.1103/physrevb.81.085301

Google Scholar

[18] M. Korkusinski, O. Voznyy, and P. Hawrylak, Fine structure and size dependence of exciton and biexciton optical spectra in CdSe nanocrystals, Phys. Rev. B. 82 (2010) 245304-245319.

DOI: 10.1103/physrevb.82.245304

Google Scholar

[19] L. W. Wang, and A. Zunger, Dielectric Constants of Silicon Quantum Dots, Phys. Rev. Lett. 73 (1994) 1039-1042.

DOI: 10.1103/physrevlett.73.1039

Google Scholar

[20] T. Takagahara, and K. Takeda, Excitonic exchange splitting and Stokes shift in Si nanocrystals and Si clusters, Phys. Rev. B. 53 (1996) R4205-R4208.

DOI: 10.1103/physrevb.53.r4205

Google Scholar

[21] S. Furukawa, and T. Miyasato, Quantum size effects on the optical band gap of microcrystalline Si: H, Phys. Rev. B. 38 (1988) 5726-5729.

DOI: 10.1103/physrevb.38.5726

Google Scholar