Signal Enhancement of Surface Plasmon Resonance Imaging for Detection of Acidovorax avenae subsp. citrulli

Article Preview

Abstract:

Signal enhancement based surface plasmon resonance imaging (SPR imaging) was developed using gold nanoparticle (AuNP) for detection of Acidovorax avenae subsp. citrulli (Aac). The antibodies against Aac, monoclonal antibody 11E5 (MAb 11E5) and polyclonal antibody MPC (PAb MPC), were covalently immobilized on the 1:40 of mixed self-assembled monolayer (mixed SAMs) surface for detection of Aac. The 107 cfu/ml of Aac was injected over the surface and was captured by immobilized antibodies on the sensing surface. PAb MPC conjugated to 10 nm of gold nanoparticle (PAb-AuNP) was flowed over the surface to enhance the SPR signal for detection of Aac. The MAb/Aac/PAb-AuNP assay provides a higher in signal enhancement than that of PAb/Aac/PAb-AuNP assay. Moreover, SPR signal using PAb-AuNP enhancement increases 23 – fold in signal enhancement when comparing to PAb enhancement. Thus, the detection of Aac based SPR imaging can be used PAb-AuNP in signal enhancement for further improvement in limit of detection (LOD).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-94

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Homola, Present and future of surface plasmon resonance biosensors, Anal. Bioanal. Chem. 377 (2000) 528-539.

Google Scholar

[2] D.R. Shankaran, K.V. Gobi, N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest, Sens. Actuators B 121 (2007) 158-177.

DOI: 10.1016/j.snb.2006.09.014

Google Scholar

[3] C. Suti, M.H. Mooney, C.T. Elliott, J. Buijs, Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis, TrAC Trends Anal. Chem. 29 (2010) 1305-1315.

DOI: 10.1016/j.trac.2010.09.003

Google Scholar

[4] A.D. Taylor, J. Ladd, J. Homola, S. Jiang, Surface plasmon resonance (SPR) sensors for the detection of bacterial pathogens, in: M. Zourob, S. Elwary, A. Turner (Eds. ), Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer Science+Business Media, LLC, New York, pp.91-92.

DOI: 10.1007/978-0-387-75113-9_5

Google Scholar

[5] C. Puttharugsa, T. Wangkam, N. Huangkamhang, O. Gajananda, O. Himananto, B. Sutapun, R. Amarit, A. Somboonkaew, T. Srikhirin, evelopment of surface plasmon resonance imaging for detection of Acidovorax avenae subsp. citrulli (Aac) using specific monoclonal antibody Biosens. Bioelectron. 26 (2011).

DOI: 10.1016/j.bios.2010.10.007

Google Scholar

[6] P. Leonard, S. Hearty, J. Quinn, R. O'Kennedy, A generic approach for the detection of whole Listeria monocytogenescells in contaminated samples using surface plasmon resonance, Biosens. Bioelectron. 19 (2004) 1331–1335.

DOI: 10.1016/j.bios.2003.11.009

Google Scholar

[7] A.D. Taylor, Q.M. Yu, S.F. Chen, J. Homola, Y. Jiang, Comparison of E-coli O157: H7 preparation methods used for detection with surface plasmon resonance sensor, Sens. Actuators B 107 (2005) 202–208.

DOI: 10.1016/j.snb.2004.11.097

Google Scholar

[8] E. Hutter, S. Cha, J.F. Lui, J. Park, J.H. Yi, D. Roy, Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging, J. Phys. Chem. B 105 (2001) 8-12.

DOI: 10.1021/jp003565q

Google Scholar

[9] D.L. Hopkins, C.M. Thompson, J. Hilgren, B. Lovic, Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon, Plant Dis. 87 (2003) 1495-1499.

DOI: 10.1094/pdis.2003.87.12.1495

Google Scholar

[10] O. Himananto, P. Thummabenjapone, P. Luxananil, M. Kumpoosiri, R. Hongprayoon, W. Kositratana, O. Gajanandana, Novel and highly specific monoclonal antibody to Acidovorax citrulli and development of ELISA-based detection in cucurbit leaves and seed, 95 (2011).

DOI: 10.1094/pdis-12-10-0889

Google Scholar

[11] J. Turkevich, P.C. Stevenson, J. Hiller, Preparation of 2. 5×10-4 M gold colloids (sodium citrate reduction method), 1951. Discuss. Faraday Soc. 11 (1951) 55-59.

Google Scholar

[12] W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Determination of size and concentration of gold nanoparticles from UV−Vis spectra, Anal. Chem. 79 (2010) 4215-4221.

DOI: 10.1021/ac0702084

Google Scholar

[13] F. Li, Q. Zhao, C. Wang, X. Lu, X.F. Li, X.C. Le, Detection of Escherichia coli O157: H7 using gold nanoparticle labeling and inductively coupled plasma mass spectrometry, Anal. Chem. 82 (2010) 3399-3403.

DOI: 10.1021/ac100325f

Google Scholar

[14] N. Houngkamhang, A. Vongsakulyanon, P. Peungthum, K. Sudprasert, P. Kitpoka, M. Kunakorn, B. Sutapun, R. Amarit, A. Somboonkaew, T. Srikhirin, ABO blood-typing using an antibody array technique based on surface plasmon resonance imaging, Sensors 13 (2013).

DOI: 10.3390/s130911913

Google Scholar