The Photoluminescence Properties of the Alkali Metals Functionalized Adamantane Studied by Using Linear-Response Time-Dependent Density Functional Theory (TD-DFT) Calculations

Article Preview

Abstract:

The photoluminescence properties of pristine adamantane molecule have been calculated by time-dependent density functional theory (TD-DFT) within the hybrid functional level. This study aims to investigate the luminescence properties of the pristine adamantane molecule and its functionalized with neutral and ion of alkali metal to form C10H16-nXn structure (where X is Li, Li+, Na and Na+ atoms, n=1). The electronic gap of the pristine adamantane (7.15 eV) is too wide, leading to an insulator property. While all the functionalized adamantanes exhibit semiconducting behavior. The absorption and emission energies of the original structure are 6.51 eV and 5.63 eV, respectively which are in good agreement with experimental results. The pure adamantane exhibits a broad photoluminescence peak in the ultraviolet region (UV). The Stokes shift of the transition between vertical and emission is 0.88 eV which agrees well with the previous work that measures the Stokes shift of 0.7 eV. The modification of adamantane indicates that the absorption and emission gaps substantially decreases. Substituting with alkali metal causes the photoluminescence onset can be shifted from the UV to the near-IR region. These results suggest that pure and the alkali metal functionalized adamantane molecules are promoting as candidate materials for the opto-electronic applications in the ultraviolet to infrared spectral regions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.E. Dahl, S.G. Liu and R.M.K. Carlson, Science, 299 (2003) 96-99.

Google Scholar

[2] G.A. Mansoori, Adv. Chem. Physics, 136 (2007) 207-258.

Google Scholar

[3] P.V.R. Schleyer, J. Am. Chem. Soc, 79 (1957) 3292.

Google Scholar

[4] G.P. Zhang, T.F. George, L. Assoufid and G.A. Mansoori, Phys. Rev, B 75 (2007) 03541.

Google Scholar

[5] G.A. Mansoori, T.F. George and G. Zhang, Prog. Nanotechnol. Res, (2007).

Google Scholar

[6] F. Marsusi, K. Mirabbaszadeh and G.A. Mansoori, Physica E, 41 (2009) 1151-1156.

Google Scholar

[7] G.C. McIntosh, M. Yoon, S. Berber and D. Tománek. Phys. Rev. B, 70 (2004) 045401.

Google Scholar

[8] N.D. Drummond, A.J. Williamson, R.J. Needs and G. Galli. Phys. Rev. Lett, 95 (2005) 096801.

Google Scholar

[9] T. M. Willey, C. Bostedt, T. van Buuren, J. E. Dahl, S. G. Liu, R. M.K. Carlson, R. W. Meulenberg, E. J. Nelson, and L. J. Terminello, Phys. Rev. B 74 (2006) 205432.

DOI: 10.1103/physrevb.74.205432

Google Scholar

[10] L. Landt, W. Kielich, D. Wolter and M. Staiger, et al. Phys Rev. B 80 (2009) 205323.

Google Scholar

[11] L. Landt, K. Klünder, J. E. Dahl and R. M. K. Carlson et al. Phys. Rev. Lett 103 (2009) 047402.

Google Scholar

[12] E. Runge and E. K. U. Gross. Phys. Rev. Lett. 52 (1984) 997.

Google Scholar

[13] M.J. Frisch et al. Gaussian 09. Revision B. 01 Gaussian, Inc., Pittsburgh, PA. (2010).

Google Scholar

[14] A.D. Becke, J. Chem. Phys, 98 (1993) 5648.

Google Scholar

[15] C. Lee, W. Yang and R.G. Parr. Phys. Rev. B, 37 (1988) 785.

Google Scholar

[16] R. Ditchfield, W.J. Hehre and J.A. Pople, J. Chem. Phys. 54 (1971) 724.

Google Scholar

[17] W.J. Hehre, R. Ditchfield and J.A. Pople, J. Chem. Phys, 56 (1972) 2257.

Google Scholar

[18] J. Franck. Transactions of the Faraday Society, 21 (1926) 536–542.

Google Scholar

[19] E. Condon. Phys. Rev, 28 (1926) 1182.

Google Scholar

[20] F. Marsusi, J. Sabbaghzadeh and N.D. Drummond, Phy. Rev. B 84 (2011) 245315.

Google Scholar

[21] M. Vörös, A. Gali, Phy. Rev. B 80 (2009) 161411(R).

Google Scholar