Nanobiohybrid: A Favorite Candidate for Future Water Purification Technology

Article Preview

Abstract:

Clean and safe water crises have become one of the major global problems for decades. To address this issue, various water purification technologies have been adopted. Conventional water purification technologies are time consuming, expensive, and have low affinity and efficiency to newly emerging micropollutants in water. The paradigm might compel scientific community to spot light on the issue and develop novel technology for ensuring clean and safe water availability to all. Among the many promises of current water purification technologies, here we proposed a combination of nanomaterial (Carbon nanotube) and biomolecule (Enzyme) or simply “nanobiohybrid” catalyst, which can be a judicious choice for developing a novel water purification technology. In addition, the potentiality of this nanobiohybrid catalyst in both sensing and mitigating organic water pollutants has been highlighted. The technology is a perfect example of multi-scale development and covers most of the challenges of existing water purification technology. We hope this “one pot” combination route can tackle a diverse range of water contaminants in the near future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-197

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] WWAP, The United Nations World Water Development Report 4: Managing Water Under Uncertainty and Risk, in, UNESCO, Paris, (2012).

DOI: 10.18356/8bfd678c-en

Google Scholar

[2] WWAP, The United Nations World Water Development Report 3: Water in a Changing World, in, UNESCO/ Earthscan, Paris/London, (2009).

Google Scholar

[3] WHO, UNICEF, Progress on sanitation and drinking-water-2013 update: joint monitoring programme for water supply and sanitation, in, (2013).

Google Scholar

[4] UNESCAP, Building Resilience to Natural Disasters and Major Economic Crises, in, UNESCAP, Bangkok, (2013).

Google Scholar

[5] UN, The Report of the High-Level Panel of Eminent Persons on the Post-2015 Development Agenda, in, UN, New York, (2013).

Google Scholar

[6] UN, Water scarcity, in, UN, (2014).

Google Scholar

[7] WHO, UNICEF, Global water supply and sanitation assessment, 2000 report, in, (2000).

Google Scholar

[8] R. Das, M.E. Ali, S.B. Abd Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination, 336 (2014) 97-109.

DOI: 10.1016/j.desal.2013.12.026

Google Scholar

[9] M. Ali, R. Das, A. Maamor, S.B.A. Hamid, Multifunctional Carbon Nanotubes (CNTs): A New Dimension in Environmental Remediation, Adv. Mater. Res. 832 (2014) 328-332.

DOI: 10.4028/www.scientific.net/amr.832.328

Google Scholar

[10] R. Das, M.E. Ali, S.B.A. Hamid, S. Ramakrishna, Z.Z. Chowdhury, Carbon nanotube membranes for water purification: A bright future in water desalination, Desalination, 336 (2014) 97-109.

DOI: 10.1016/j.desal.2013.12.026

Google Scholar

[11] R. Das, S.B.A. Hamid, M.E. Ali, A.F. Ismail, M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: The present, past and future, Desalination, 354 (2014) 160-179.

DOI: 10.1016/j.desal.2014.09.032

Google Scholar

[12] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[13] V.K.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review, Sci. Tot. Environ. 408 (2009) 1-13.

DOI: 10.1016/j.scitotenv.2009.09.027

Google Scholar

[14] G. Aragay, J. Pons, A. Merkoçi, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev. 111 (2011) 3433-3458.

DOI: 10.1021/cr100383r

Google Scholar

[15] D.L. Nelson, A.L. Lehninger, M.M. Cox, Lehninger principles of biochemistry, Macmillan, (2008).

Google Scholar

[16] F. Subrizi, M. Crucianelli, V. Grossi, M. Passacantando, L. Pesci, R. Saladino, Carbon Nanotubes as Activating Tyrosinase Supports for the Selective Synthesis of Catechols, ACS Catalysis, 4 (2014) 810-822.

DOI: 10.1021/cs400856e

Google Scholar

[17] M.H. Siddique, C.C. St Pierre, N. Biswas, J.K. Bewtra, K.E. Taylor, Immobilized enzyme catalyzed removal of 4-chlorophenol from aqueous solution, Water Res. 27 (1993) 883-890.

DOI: 10.1016/0043-1354(93)90153-9

Google Scholar

[18] B. Brena, P. González-Pombo, F. Batista-Viera, Immobilization of Enzymes: A Literature Survey, in: Immobilization of Enzymes and Cells, Springer, 2013, pp.15-31.

DOI: 10.1007/978-1-62703-550-7_2

Google Scholar

[19] W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes, Biotech. Adv., 29 (2011) 889-895.

Google Scholar

[20] P. Asuri, S.S. Bale, S.S. Karajanagi, R.S. Kane, The protein–nanomaterial interface, Curr. Opin. Biotech. 17 (2006) 562-568.

DOI: 10.1016/j.copbio.2006.09.002

Google Scholar

[21] Y. -M. Lee, O. -Y. Kwon, Y. -J. Yoon, K. Ryu, Immobilization of horseradish peroxidase on multi-wall carbon nanotubes and its electrochemical properties, Biotech. Lett. 28 (2006) 39-43.

DOI: 10.1007/s10529-005-9685-8

Google Scholar

[22] Y. Liu, X. Qu, H. Guo, H. Chen, B. Liu, S. Dong, Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite, Biosens. Bioelectron. 21 (2006) 2195-2201.

DOI: 10.1016/j.bios.2005.11.014

Google Scholar

[23] A. Guiseppi-Elie, C. Lei, R.H. Baughman, Direct electron transfer of glucose oxidase on carbon nanotubes, Nanotechnology, 13 (2002) 559.

DOI: 10.1088/0957-4484/13/5/303

Google Scholar

[24] E.T. Hwang, M.B. Gu, Enzyme stabilization by nano/microsized hybrid materials, Engineering in Life Sciences, 13 (2013) 49-61.

DOI: 10.1002/elsc.201100225

Google Scholar

[25] Y. Gao, I. Kyratzis, Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment, Bioconjugate Chem. 19 (2008) 1945-(1950).

DOI: 10.1021/bc800051c

Google Scholar

[26] D. Nepal, K.E. Geckeler, pH‐Sensitive Dispersion and Debundling of Single‐Walled Carbon Nanotubes: Lysozyme as a Tool, Small, 2 (2006) 406-412.

DOI: 10.1002/smll.200500351

Google Scholar

[27] P. Asuri, S.S. Karajanagi, E. Sellitto, D.Y. Kim, R.S. Kane, J.S. Dordick, Water‐soluble carbon nanotube‐enzyme conjugates as functional biocatalytic formulations, Biotechnol. Bioengin. 95 (2006) 804-811.

DOI: 10.1002/bit.21016

Google Scholar

[28] W. Huang, S. Taylor, K. Fu, Y. Lin, D. Zhang, T.W. Hanks, A.M. Rao, Y. -P. Sun, Attaching proteins to carbon nanotubes via diimide-activated amidation, Nano Lett. 2 (2002) 311-314.

DOI: 10.1021/nl010095i

Google Scholar

[29] K. Jiang, L.S. Schadler, R.W. Siegel, X. Zhang, H. Zhang, M. Terrones, Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation, J. Mater. Chem. 14 (2004) 37-39.

DOI: 10.1039/b310359e

Google Scholar

[30] N.S. Lawrence, R.P. Deo, J. Wang, Comparison of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources, Electroanalysis, 17 (2005) 65-72.

DOI: 10.1002/elan.200403120

Google Scholar

[31] R. Das, M.E. Ali, S.B.A. Hamid, M.S.M. Annuar, S. Ramakrishna, Common Wet Chemical Agents for Purifying Multi-Walled Carbon Nanotubes J. Nanomaterials, In Press (2014).

DOI: 10.1155/2014/945172

Google Scholar

[32] M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials, Environ. Sci. Technol. 42 (2008) 5843-5859.

DOI: 10.1021/es8006904

Google Scholar

[33] B.P. López, A. Merkoçi, Improvement of the electrochemical detection of catechol by the use of a carbon nanotube based biosensor, Analyst, 134 (2009) 60-64.

DOI: 10.1039/b808387h

Google Scholar