Photocatalytic Inactivation of Escherichia Coli Using Zinc Stannate Nanostructures under Visible Light

Article Preview

Abstract:

Zinc stannate (ZnSnO3) nanostructured were synthesized in aqueous media at room temperature. The room temperature synthesis was designed using pourbaix diagrams. The synthesized nanoparticles were checked for their photocatalytic activity for inactivation of model microbe such as Escherichia coli (E.Coli). Photocatalytic activity was observed for zinc stannate (ZTO) in colloidal solution and ZTO deposited on glass slides. Various different concentrations of ZTO nanoparticles were used in slurry form, the bactericidal activity was observed under halogen light, room light and dark conditions. Type of light source and concentration of catalyst were observed to be the two utmost parameters for assessing the efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-209

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sunandan Baruah, Samir K. Pal, and Joydeep Dutta, Nanostructured Zinc Oxide for Water Treatment. Nanoscience & Nanotechnology-Asia, 2012. 4(2).

DOI: 10.2174/2210681211202020090

Google Scholar

[2] Lonnen, J., et al., Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Research, 2005. 39(5): pp.877-883.

DOI: 10.1016/j.watres.2004.11.023

Google Scholar

[3] Rincon, A.G. and C. Pulgarin, Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: Post-irradiation events in the dark and assessment of the effective disinfection time. Applied Catalysis B: Environmental, 2004. 49(2): pp.99-112.

DOI: 10.1016/j.apcatb.2003.11.013

Google Scholar

[4] Adams, L.K., D.Y. Lyon, and P.J.J. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 2006. 40(19): pp.3527-3532.

DOI: 10.1016/j.watres.2006.08.004

Google Scholar

[5] Huang, N., et al., Photochemical disinfection of Escherichia coli with a TiO2 colloid solution and a self-assembled TiO2 thin film. Supramolecular Science, 1998. 5(5-6): pp.559-564.

DOI: 10.1016/s0968-5677(98)00074-1

Google Scholar

[6] Qi, L., et al., Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 2004. 339(16): pp.2693-2700.

DOI: 10.1016/j.carres.2004.09.007

Google Scholar

[7] Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004. 275(1): pp.177-182.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[8] Krishna, V., et al., Mechanism of enhanced photocatalysis with polyhydroxy fullerenes. Applied Catalysis B: Environmental, 2008. 79(4): pp.376-381.

DOI: 10.1016/j.apcatb.2007.10.020

Google Scholar

[9] Gelover, S., et al., A practical demonstration of water disinfection using TiO2 films and sunlight. Water Research, 2006. 40(17): pp.3274-3280.

DOI: 10.1016/j.watres.2006.07.006

Google Scholar

[10] Ibanez, J.A., M.I. Litter, and R.A. Pizarro, Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (-) bacteria. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 157(1): pp.81-85.

DOI: 10.1016/s1010-6030(03)00074-1

Google Scholar

[11] Erkan, A., U. Bakir, and G. Karakas, Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 184(3): pp.313-321.

DOI: 10.1016/j.jphotochem.2006.05.001

Google Scholar

[12] Baruah, S. and J. Dutta, Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009. 10(1): p.013001.

DOI: 10.1088/1468-6996/10/1/013001

Google Scholar

[13] Baruah, S., et al., Photocatalytic paper using zinc oxide nanorods. Science and Technology of Advanced Materials, 2010. 11(5).

Google Scholar

[14] Najam Khan, M., et al., Visible light photocatalysis of mixed phase zinc stannate/zinc oxide nanostructures precipitated at room temperature in aqueous media. Ceramics International, 2014. 40(6): pp.8743-8752.

DOI: 10.1016/j.ceramint.2014.01.094

Google Scholar

[15] Al-Hinai, A.T., M.H. Al-Hinai, and J. Dutta, Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes in an aqueous media. Materials Research Bulletin, 2014. 49(0): pp.645-650.

DOI: 10.1016/j.materresbull.2013.10.011

Google Scholar

[16] Najam Khan, M. and J. Dutta, Comparison of photocatalytic activity of zinc stannate particles and zinc stannate/zinc oxide composites for the removal of phenol from water, and a study on the effect of pH on photocatalytic efficiency. Materials Science in Semiconductor Processing, 2015. 36(0): pp.124-133.

DOI: 10.1016/j.mssp.2015.03.011

Google Scholar

[17] Najam Khan, M., Comparison of different zinc stannate structures synthesized at room temperature for photodegradation of dyes and phenol, in Nanotechnology. 2014, Asian Institute of Technology: Bangkok.

Google Scholar

[18] Baruah, S., M. Jaisai, and J. Dutta, Development of a visible light active photocatalytic portable water purification unit using ZnO nanorods. Catalysis Science & Technology, 2012. 2(5): pp.918-921.

DOI: 10.1039/c2cy20033c

Google Scholar

[19] Zhang, Y., et al., Hydrothermal synthesis and characterization of single-crystalline zinc hydroxystannate microcubes. Journal of Crystal Growth, 2007. 308(1): pp.99-104.

DOI: 10.1016/j.jcrysgro.2007.07.030

Google Scholar

[20] ATMACA;, S., K. GÜL;, and R. ÇİÇEK, The Effect of Zinc On Microbial Growth. Tr. J. of Medical Sciences, 1998. 28: pp.595-597.

Google Scholar

[21] Barry, A.L., et al., Methods of measuring zones of inhibition with the Bauer-Kirby disk susceptibility test. Journal of Clinical Microbiology, 1979. 10(6): pp.885-889.

DOI: 10.1128/jcm.10.6.885-889.1979

Google Scholar