Fabrication and Characterization of TiO2 Nanotubes for Dye-Sensitized Solar Cells

Article Preview

Abstract:

TiO2 nanotubes were successfully synthesized by anodization method of Ti foils. The electrolyte was composed of ethylene glycol (EG), ammonium fluoride (0.3%wt NH4F) and de-ionized water (2% vol H2O). A constant DC power supply of 50 V was used during anodization with anodizing times of 1 hour, 2 hours, 4 hours and 6 hours. The samples were annealed at 450 °C for 2 hours. The TiO2 nanotubes were studied by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Structural analysis revealed the presence of pure Ti, and the crystalline anatase phase due to transformation of amorphous TiO2 after annealing. The morphology of TiO2 nanotube sizes showed an increase in tube diameter with anodizing time from approximately 50 nm to 200 nm. However, the efficiency of dye-sensitized solar cells increased with anodizing times up to a maximum of 5.74 % for anodizing time of 4 hours.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-220

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhu and M. Zach., Current Opinion in Colloid & Interface Science, 14(2009), 260-269.

Google Scholar

[2] V.K. Mahajan, S.K. Mohapatra and M. Misra, Int. J. Hydrogen Energy, 33(2008) 5369-5374.

Google Scholar

[3] O'Regan B, Grätzel M, Nature 353(1991), 737–739.

Google Scholar

[4] M.A. Green et al. Prog Photovoltaics Res. Appl. 17(2009), 320-326.

Google Scholar

[5] Poulomi Roy, Sergiu P. Albu, Patrik Schmuki, Electrochemistry Com. 12(2010) 949-951.

Google Scholar

[6] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochimica Acta (45)1999, 921–929.

DOI: 10.1016/s0013-4686(99)00283-2

Google Scholar

[7] H. Park et al, Solar Energy Materials & Solar Cells. 95(2011) 184-189.

Google Scholar

[8] J.H. Park, S. Kim and A.J. Bard, Nano Lett. 6(2006), 24-28.

Google Scholar

[9] Y.Y. Zhang, W.Y. Fu and H.B. Yang, Appl. Phys. Lett. 82(2003), 281-283.

Google Scholar

[10] Hu Tian, Junfeng Ma, Kang Li, Jinjun Li, Ceramics Int. 35 (2009), 1289-1292.

Google Scholar

[11] Soon H. K, Wonjoo L., Yoon-Chae N. et al, Current Applied Physics 13(2013), 252-255.

Google Scholar

[12] Z. He et al, Ceramics International 39(2013), 5545-5552.

Google Scholar

[13] H. Xu et al, Applied Surface Science 257(201), 8478-8480.

Google Scholar

[14] J.M. Macak, H. Tsuchiya and P. Schmuki, Angew. Chem. Int. Ed. 44(2005), 2100-2102.

Google Scholar

[15] Hailei Li, Lixin Cao, Wei Liu, Ge Su, Bohua Dong, Ceramics Int. 38(2012), 5791-5797.

Google Scholar

[16] Ning Liu, Kiyoung Lee, Patrik Schmuki, Electrochemistry Com. 15(2012), 1-4.

Google Scholar

[17] Bing-Xin Lei, Qiu-Ping Luo, et al, Advanced Powder Technology 24(2013), 175-182.

Google Scholar

[18] S. Bauer et al, Electrochemistry Com. 13(2011), 538-541.

Google Scholar

[19] Srimala S. et al, Journal of Alloys and Compounds 485(2009), 478-483.

Google Scholar

[20] U. Tipparach et al, J. Nat. Sci. Special Issue on Nanotechnology. 7(1) (2008), 129-136.

Google Scholar

[21] Shih-Yu Ho., Chaochin Su, et al, Thin Solid Films 529(2013), 123–127.

Google Scholar

[22] Hee Yeon H et al. Solar Energy 85(2011), 1551-1559.

Google Scholar

[23] J.M. Macak et al, Journal of Electroanalytical Chemistry. 621(2008), 254-266.

Google Scholar

[24] Rui Liu et al, Thin Solid Films. 519(2011), 6459-6466.

Google Scholar

[25] Ho Chang, Chih-Hao C., Mu-Jung K., et al, Applied Surface Science 275(2013), 252-257.

Google Scholar

[26] Hun Park et al, Solar Energy Materials & Solar Cells. 95(2011), 184-189.

Google Scholar