Enhancement on the Electrical Properties of PVDF/MgO Nanocomposite Thin Films

Article Preview

Abstract:

Poly (vinylideneflouride)/nanomagnesium oxide (PVDF/MgO) film with MgO loading percentage of 7% were annealed with various annealing temperatures ranging from 70°C to 170°C. The PVDF/MgO(7%) thin films were fabricated using spin coating technique with metal-insulator-metal (MIM) configuration and the dielectric constant of PVDF/MgO(7%) with respect to annealing temperatures was studied. The PVDF/MgO nanocomposite thin films annealed at temperature of 70°C (AN70) showed an improvement in the dielectric constant of 27 at 103 Hz compared to un-annealed sample (UN), which is 21 at the same frequency. As the annealing temperatures were increased from 90°C (AN90) to 150oC (AN150), the dielectric constant of PVDF/MgO(7%) were found to gradually decreased from 25 to 12 respectively, interestingly lower than the UN thin films. AN70 also produced low value of tangent loss (tan δ) at frequency of 103 Hz. The resistivity value of AN70 was also found to increase from 3.08×104Ω.cm (UN-PVDF) to 1.05×105Ω.cm. The increased in dielectric constant, with low tangent loss and high resistivity value suggests that 70°C was the favourable annealing temperature for PVDF/MgO(7%) for application in electronic devices such as low frequency capacitor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-22

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hongjun Luo, Y.H., Dongshan Wang, The crystallization and crystal transition of PVDF in PAN nano-tube. Polymer, 2013. 54: pp.4710-4718.

DOI: 10.1016/j.polymer.2013.06.036

Google Scholar

[2] Arranz-Andrés, J., Pulido-González, N., Fonseca, C., Pérez, E., and Cerrada, M. L., Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability. Materials Chemistry and Physics, 2013. 142(2–3): pp.469-478.

DOI: 10.1016/j.matchemphys.2013.06.038

Google Scholar

[3] Adillah, N.A., Rozana, M.D., Mohd, H.W.M., Habibah, Z., Lyly, N.I., Muhamad, N.S., and Mohamad, R.M., The Study of the Surface Morphology of PVDF/MgO Nanocomposites Thin Films. Advanced Materials Research, 2013. 626: pp.311-316.

DOI: 10.4028/www.scientific.net/amr.626.311

Google Scholar

[4] Buckley, J., P. Cebe, D. Cherdack, J. Crawford, B. S. Ince, M. Jenkins, J. Pan, M. Reveley, N. Washington, and N. Wolchover, Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer, 2006. 47(7): pp.2411-2422.

DOI: 10.1016/j.polymer.2006.02.012

Google Scholar

[5] Kutz, M., Handbook of Materials Selection. 2002, Albany, NY, USA: John Wiley. 1497.

Google Scholar

[6] K. S. Tan, W.C. Gan, T S Velayutham and W H Abd Majid, Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Mater. Struct., 2014. 23: p.11.

DOI: 10.1088/0964-1726/23/12/125006

Google Scholar

[7] Oh, S.J., N. Kim, and Y.T. Lee, Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. Journal of Membrane Science, 2009. 345(1-2): pp.13-20.

DOI: 10.1016/j.memsci.2009.08.003

Google Scholar

[8] Rekik, H., Ghallabi, Z., Royaud, I., Arous, M., Seytre, G., Boiteux, G., and Kallel, A., Dielectric relaxation behaviour in semi-crystalline polyvinylidene fluoride (PVDF)/TiO2 nanocomposites. Composites Part B: Engineering, 2013. 45(1): pp.1199-1206.

DOI: 10.1016/j.compositesb.2012.08.002

Google Scholar

[9] Otsuka, T. and Y. Chujo, Synthesis of transparent poly(vinylidene fluoride) (PVdF)/zirconium oxide hybrids without crystallization of PVDF chains. Polymer, 2009. 50(14): pp.3174-3181.

DOI: 10.1016/j.polymer.2009.05.018

Google Scholar

[10] Arshad, A.N., Rozana M.D., Wahid, M.H., Sarip, M.N., and Mahmood, M.R., The Effect of Annealing Temperatures on the Dielectric Constant of PVDF/MgO Nanocomposites Thin Films. Advanced Materials Research, 2014. 895: pp.221-225.

DOI: 10.4028/www.scientific.net/amr.895.221

Google Scholar

[11] Chen, J. -Y., W. -H. Hsu, and C. -L. Huang, Dielectric properties of magnesium oxide at microwave frequency. Journal of Alloys and Compounds, 2010. 504(1): pp.284-287.

DOI: 10.1016/j.jallcom.2010.05.114

Google Scholar

[12] Paleo, A.J., C. Martinez-Boubeta, L. Balcells, C. Costa, V. Sencadas, and S. Lanceros-Mendez, Thermal, dielectrical and mechanical response of alpha and beta-poly(vinilydene fluoride)/Co-MgO nanocomposites. Nanoscale Research Letters, 2011. 6(1): p.257.

DOI: 10.1186/1556-276x-6-257

Google Scholar

[13] Rozana, M., Arshad, A. N., Wahid, M. H., Habibah, Z., Ismail, L. N., Sarip, M. N., and Rusop, M., Dielectric constant of PVDF/MgO nanocomposites thin films. in Business, Engineering and Industrial Applications (ISBEIA), 2012 IEEE Symposium on. 2012: IEEE.

DOI: 10.1109/isbeia.2012.6422866

Google Scholar

[14] Bramoulle, M. Electrolytic or film capacitors? in Industry Applications Conference, 1998. Thirty-Third IAS Annual Meeting. The 1998 IEEE. (1998).

DOI: 10.1109/ias.1998.730290

Google Scholar

[15] Chuang-Yuan, L., and K. Eun Sok, Piezoelectrically actuated tunable capacitor. Microelectromechanical Systems, Journal of, 2006. 15(4): pp.745-755.

DOI: 10.1109/jmems.2006.878886

Google Scholar

[16] Gregorio Jr, R. and D.S. Borges, Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer, 2008. 49(18): pp.4009-4016.

DOI: 10.1016/j.polymer.2008.07.010

Google Scholar

[17] Gregorio Jr, R. and M. Cestari, Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 1994. 32(5): pp.859-870.

DOI: 10.1002/polb.1994.090320509

Google Scholar

[18] Gregorio, R., Determination of the α, β, and γ crystalline phases of poly (vinylidene fluoride) films prepared at different conditions. Journal of Applied Polymer Science, 2006. 100(4): pp.3272-3279.

DOI: 10.1002/app.23137

Google Scholar

[19] Dang, Z. -M., Y. -H. Zhang, and S.C. Tjong, Dependence of dielectric behavior on the physical property of fillers in the polymer-matrix composites. Synthetic Metals, 2004. 146(1): pp.79-84.

DOI: 10.1016/j.synthmet.2004.06.011

Google Scholar