Surface Morphologies of PVDF-TrFE/MgO Nanocomposite Thin Films and its Effect on the Ferroelectric Properties

Article Preview

Abstract:

The enhancement of ferroelectric and dielectric properties of PVDF-TrFE by incorporating various percentages of Magnesium Oxide (1 – 7%) for spin coated nanocomposite thin film was demonstrated. Observations showed uniform distribution and low agglomeration of MgO in the PVDF-TrFE nanocomposite thin film, especially for 3% MgO. Additionally, the 3% MgO incorporated into PVDF-TrFE had generated the highest Pr (88 mC/m2) and dielectric constant (13.6) in comparison other percentage compositions. However, the addition of more than 3% MgO filler loading caused a reduction in the ferroelectric and dielectric properties of the nanocomposite thin films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

6-11

Citation:

Online since:

December 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bae, I., S.J. Kang, Y.J. Park, T. Furukawa, and C. Park, Organic ferroelectric field-effect transistor with P(VDF-TrFE)/PMMA blend thin films for non-volatile memory applications. Current Applied Physics, 2010. 10(1, Supplement 1): p. e54-e57.

DOI: 10.1016/j.cap.2009.12.013

Google Scholar

[2] Müller, K., K. Henkel, I. Paloumpa, and D. Schmeier. Organic field effect transistors with ferroelectric hysteresis. Thin Solid Films, 2007. 515(19): pp.7683-7687.

DOI: 10.1016/j.tsf.2006.11.063

Google Scholar

[3] Nyl I., L., N. N. Hafizah, M.S. Shamsudin, Z. Habibah, M.A. Hanapiah, S.H. Herman and M. Rusop, Effect of Solvent on the Dielectric Properties of Nanocomposite Poly(methyl methacrylate)-Doped Titanium Dioxide Dielectric Films. Japanese Journal of Applied Physics 2012. 51: p. 06FG09.

DOI: 10.7567/jjap.51.06fg09

Google Scholar

[4] Thomas, P., Varughese, K. T., Dwarakanath, K. and Varma, K. B. R., Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Composites Science and Technology, 2010. Volume 70(3): pp.539-545.

DOI: 10.1016/j.compscitech.2009.12.014

Google Scholar

[5] Furukawa, T., Y. Takahashi, and T. Nakajima, Recent advances in ferroelectric polymer thin films for memory applications. Current Applied Physics, 2010. 10(1, Supplement 1): p. e62-e67.

DOI: 10.1016/j.cap.2009.12.015

Google Scholar

[6] Furukawa, T., Structure and functional properties of ferroelectric polymers. Advances in Colloid and Interface Science, 1997. 71-72: pp.183-208.

DOI: 10.1016/s0001-8686(97)90017-8

Google Scholar

[7] Furukawa, T., Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions, 1989. 18(3-4): pp.143-211.

DOI: 10.1080/01411598908206863

Google Scholar

[8] Rozana, M.D., M.H. Wahid, A.N. Arshad, M.N. Sarip, Z. Habibah, L.N. Ismail, M. Rusop , W.H. Abd. Majid and W.C. Gan. , Effect of Various Annealing Temperature on the Morphological and Dielectric Properties of Polyvinylidenefluoride-Trifluoroethylene Thin Film. 2012 IEEE Symposium on Humanities, Science and Engineering Research, 2012: pp.378-382.

DOI: 10.1109/shuser.2012.6268990

Google Scholar

[9] Nguyen, C.A., Mhaisalkar, S. G., Ma, J. and Lee, P. S., Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric. Organic Electronics, 2008. 9(6): pp.1087-1092.

DOI: 10.1016/j.orgel.2008.08.012

Google Scholar

[10] Bauer, F., Review on the properties of the ferrorelaxor polymers and some new recent developments. Applied Physics A: Materials Science & Processing, 2012. 107(3): pp.567-573.

DOI: 10.1007/s00339-012-6831-8

Google Scholar

[11] Cebe, P. and J. Runt, P(VDF-TrFE)-layered silicate nanocomposites. Part 1. X-ray scattering and thermal analysis studies. Polymer, 2004. 45(6): p.1923-(1932).

DOI: 10.1016/j.polymer.2004.01.014

Google Scholar

[12] Nguyen V. S., R. Didier, V. Brice, B. Laurent, D.S. Fabrice Domingues , L. Emmanuel and F. Yves, Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films. Applied Surface Science, 2013. 279: pp.204-211.

DOI: 10.1016/j.apsusc.2013.04.070

Google Scholar

[13] Fang, F., W. Yang, M.Z. Zhang, and Z. Wang, Mechanical response of barium-titanate/polymer 0-3 ferroelectric nano-composite film under uniaxial tension. Composites Science and Technology, 2009. 69(5): pp.602-605.

DOI: 10.1016/j.compscitech.2008.12.003

Google Scholar

[14] Yan, L., C.M. Lopez, R.P. Shrestha, E.A. Irene. A. Suvorova and M. Saunders, Magnesium oxide as a candidate high-κ gate dielectric. Applied Physics Letters, 2006. 88(14): p.142901.

DOI: 10.1063/1.2191419

Google Scholar

[15] Posadas, A., F.J. Walker, C.H. Ahn, T.L. Goodrich, Z. Cai and K.S. Ziemer, Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Applied Physics Letters, 2008. 92(23): p.233511.

DOI: 10.1063/1.2944865

Google Scholar

[16] Adillah, N.A., Rozana, M. D., M.H. Wahid, Habibah, Z., Lyly, N. I., Muhamad, N. S. and Mohamad, R. M., The study of the surface morphology of PVDF/MgO nanocomposites thin films. Advanced Materials Research, 2013. 626: pp.311-316.

DOI: 10.4028/www.scientific.net/amr.626.311

Google Scholar

[17] Li, W., Zhu, Yuejin, Hua, Dayin, Wang, Peiqing, Chen, Xiaorong and Shen, Jie, Crystalline morphologies of P(VDF-TrFE) (70/30) copolymer films above melting point. Applied Surface Science, 2008. 254(22): pp.7321-7325.

DOI: 10.1016/j.apsusc.2008.05.339

Google Scholar

[18] Jong Soon Lee, K.J. Kap and A.A. Prabu, Ferroelectric P(VDF/TrFE) Ultrathin Film for SPM-based Data Storage Devices Solid State Phenomena, 2007. 124-126: pp.303-306.

DOI: 10.4028/www.scientific.net/ssp.124-126.303

Google Scholar

[19] Furukawa, T., T. Nakajima, and Y. Takahashi, Factors Governing Ferroelectric Switching Characteristics of Thin VDF/trFE Copolymer Films. IEEE Transactions on Dielectrics and Electrical Insulation, 2006. 13(5): pp.1120-1131.

DOI: 10.1109/tdei.2006.247840

Google Scholar