Phase Transformations during Laser Processing of Aerospace Metallic Materials

Article Preview

Abstract:

Phase transformations in laser processed metallic materials usually occur under very high temperature gradients and during a short time. Therefore, laser materials processing has been usually associated to high heating and cooling rates. However, before understanding the temperature evolution of the target, the absorptivity and the optical penetration must be considered. This paper presents some conjectures about the how the metal absorbs the laser radiation and how rapid phase transformations take place. It would be proposed that the interface response functions could be a possible way to understand phase transformations from liquid or high temperature solid solution conditions. Finally, it will be presented some results about laser processed materials of aerospace interest: steels, titanium and aluminium, which will illustrate the practical applications of the theories.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-201

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /en. wikipedia. org/wiki/Archimedes.

Google Scholar

[2] Information on http: /en. wikipedia. org/wiki/Solar_constant.

Google Scholar

[3] The War of the Worlds at Project Gutenberg. Information on http: /www. gutenberg. org/etext/36.

Google Scholar

[4] H.G. Dreehsen, C. Hartwich, J.H. Schaefer and J. Uhlenbusch, Journal of Applied Physics 56, (1984) 238-240.

Google Scholar

[5] P.A.A. Khan and T. Debroy, Metallurgical Transactions 16B (1985) 853-856.

Google Scholar

[6] T. Iida and R.I.L. Guthrie, The physical properties of liquid metal alloys, Oxford Science Publ., Oxford, 1988, p.232.

Google Scholar

[7] Smithells Metals Reference Handbook, sixty ed., Edited by E.A. Brandes, Elsevier, Amsterdam, 1983, pp.14-4.

Google Scholar

[8] P. Drude, R.A. Millikan and C.R. Mann, The theory of optics, Longmans, Green, and Co London, (1902).

Google Scholar

[9] G.S. Arnold, Absorptivity of several metals at 10. 6 µm: empirical expressions for the temperature dependence computed from Drude theory, Applied Optics 23 (1984) 1434-1436.

DOI: 10.1364/ao.23.001434

Google Scholar

[10] Information on http: /en. wikipedia. org/wiki/Ellipsometry.

Google Scholar

[11] A. Frenk, A.F.A. Hoadley and J. -D. Wagnière, In-situ technique for measuring the absorption during laser surface remelting, Metallurgical Transactions B 22 (1991) 139-141.

DOI: 10.1007/bf02672536

Google Scholar

[12] M.S.F. Lima and J.D. Wagniere, Determinação da absorção do feixe laser em ensaios de refusão em regime contínuo (in Portuguese), Rev. Metal. Madrid, 34 (1998) 131-134.

Google Scholar

[13] H. Horvath, Atmospheric light absorption-A review, Atmospheric Environment. Part A. General Topics, In: First Ibero-American Conference on the Atmospheric Environment, CIAMAA91/ACAE91. Volume 27, Issue 3, February 1993, pp.293-317.

DOI: 10.1016/0960-1686(93)90104-7

Google Scholar

[14] A.M. Prokhorov, V.I. Konov, I. Ursu and I.N. Mihalescu, Laser Heating of Metals, Adam Hilger, Bristol, (1990).

Google Scholar

[15] D. Rosenthal, The theory of moving source of heat and it's application to metal treatment. Trans. A.S.M.E. November (1946) 849-866.

Google Scholar

[16] E. Geissler and H.W. Bergmann, Laserhärten von Bauteilkanten, Opt. Elekt. Mag. 3 (1987) 402-408.

DOI: 10.1007/978-3-642-83174-4_83

Google Scholar

[17] O. Hunziker, Cartes de microstructure de solidification dans le système Ni-Ni3Al-NiAl, PhD. Thesis no. 1687, Ecole Polytechnique Fédérale de Lausanne, EPFL, Switzerland, (1997).

DOI: 10.3940/rina.innovsail.2010.14

Google Scholar

[18] Information on http: /www. comsol. com.

Google Scholar

[19] Information on http: /www. esi-group. com/software-services/virtual-manufacturing/weldingassembly.

Google Scholar

[20] P. Peyre, P. Aubry, R. Fabbro, R. Neveu and A. Longuet, Analytical and numerical modelling of the direct metal deposition laser process, J. Phys. D: Appl. Phys. 41 (2008) 025403.

DOI: 10.1088/0022-3727/41/2/025403

Google Scholar

[21] A.L.C. Higashi and M. S. F. Lima, Occurrence of Defects in Laser Beam Welded Al-Cu-Li Sheets with T-joint Configuration, J. Aerosp. Technol. Manag. 4 (2012) 421-429.

DOI: 10.5028/jatm.2012.04044212

Google Scholar

[22] R. Trivedi, W. Kurz, Dendritic growth, Int. Mater. Rev. 39 (1994) 49-74.

Google Scholar

[23] P. Gilgien and W. Kurz, Microstructure selection in binary and ternary alloys, Materials Science and Engineering A178 (1994) 199-201.

DOI: 10.1016/0921-5093(94)90543-6

Google Scholar

[24] P.M. Smith and M.J. Aziz, Solute trapping in aluminum alloys, Acta Metall. Mater. 42 (1994) 3515-3525.

DOI: 10.1016/0956-7151(94)90483-9

Google Scholar

[25] M.S.F. Lima and A.M.E. Santo, Phase Transformations in an AISI 410S Stainless Steel Observed in Directional and Laser-induced Cooling Regimes, Materials Research 15 (2012) 32-40.

DOI: 10.1590/s1516-14392012005000003

Google Scholar

[26] W.A. Tiller, K.A. Jackson, J.W. Rutter and B. Chalmers, The redistribution of solute atoms during the solidification of metals. Acta Metall. 1 (1953) 428-437.

DOI: 10.1016/0001-6160(53)90126-6

Google Scholar

[27] W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications, Lausanne, 4th edition, 1998, p.247.

Google Scholar

[28] M.J. Aziz, Model for solute redistribution during rapid solidification. J. Appl. Phys. 53 (1982) 1158-1169.

Google Scholar

[29] W.J. Boettinger and S.R. Coriell, Science and Technology of the Undercooled Melt, NATO ASI Series 114, P.R. Sahm, H. Jones and C.M. Adams (eds), Dordrecht, Netherlands, 1986, p.81.

Google Scholar

[30] M.J. Aziz and T. Kaplan, Continuous growth model for interface motion during alloy solidification, Acta Metall. 36 (1988) 2335-2347.

DOI: 10.1016/0001-6160(88)90333-1

Google Scholar

[31] M.J. Aziz, Interface attachment kinetics in alloy solidification, Met. Mat. Trans. 27A (1996) 671-686.

Google Scholar

[32] W. Kurz, B. Giovanola and R. Trivedi, Theory of microstructural development during rapid solidification, Acta Metall. Mater. 34 (1986) 823-830.

DOI: 10.1016/0001-6160(86)90056-8

Google Scholar

[33] W.W. Mullins and R.F. Sekerka, The Stability of a Planar Interface During Solidification of a Dilute Binary Alloy, J. Appl. Phys. 35 (1989) 444-451.

DOI: 10.1063/1.1713333

Google Scholar

[34] D.A. Huntley and S.H. Davis, Thermal effects in rapid directional solidification: linear theory Acta Metall. Mater. 41 (1993) 2025-(2043).

DOI: 10.1016/0956-7151(93)90373-z

Google Scholar

[35] M. Carrard, M. Gremaud, M. Zimmermann and W. Kurz, About the banded structure in rapidly solidified dendritic and eutectic alloys, Acta Metall. Mater. 40 (1992) 983-996.

DOI: 10.1016/0956-7151(92)90076-q

Google Scholar

[36] W. Kurz and R. Trivedi, Banded solidification microstructures, Metall. Mater. Trans. 27A (1996) 625-634.

DOI: 10.1007/bf02648951

Google Scholar

[37] M.C. Flemings, Solidification Processing, Mat. Sci. Eng. Series, McGraw-Hill, New York, 1974, p.301.

Google Scholar

[38] D. Turnbull, On the relation between crystallization rate and liquid structure, J. Phys. Chemistry 66 (1962) 609-613.

DOI: 10.1021/j100810a009

Google Scholar

[39] P. Gilgien and W. Kurz, Microstructure selection in binary and ternary alloys, Mat. Sci. Eng. A178 (1994) 199-201.

Google Scholar

[40] W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications, Lausanne, 4th edition, 1998, p.96.

Google Scholar

[41] K.A. Jackson and J.D. Hunt, Lamellar and Rod Eutectic Growth, Trans. AIME 236 (1966) 1129-1142.

Google Scholar

[42] W.H. Wang, C. Dong and C.H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44 (2004) 45-89.

DOI: 10.1016/j.mser.2004.03.001

Google Scholar

[43] J.C. Ion, Laser Processing of Engineering Materials, Elsevier, Amsterdam, 2005, ISBN: 978-07506-6079-2, 556p.

Google Scholar

[44] R.H.M. Siqueira, A.C. Oliveira, R. Riva, A.J. Abdalla, C.A.R.P. Baptista and M.S.F. Lima, Mechanical and microstructural characterization of laser-welded joints of 6013-T4 aluminum alloy, J Braz. Soc. Mech. Sci. Eng. 37 (2015) 133-140.

DOI: 10.1007/s40430-014-0175-6

Google Scholar

[45] S.M. Carvalho and M.S.F. Lima, Laser Beam Welding Tempered 300M Ultrahigh Mechanical Strength Steel. J. of the Braz. Soc. of Mech. Sci. Eng. 34 (2012) 18-23.

Google Scholar

[46] S.M. Carvalho, C.A.R.P. Baptista and M.S.F. Lima, Simulating the damage accumulation in aircraft bleed system ducts joined by laser and arc welding processes, Procedia Engineering 10 (2011) 1321-1326.

DOI: 10.1016/j.proeng.2011.04.220

Google Scholar

[47] W.D. Antunes, Experimental development of the hybrid welding for advanced high strength steels, Thesis (M. Sc. ), Instituto Tecnologico de Aeronautica, Director: M.S.F. Lima, in course, (2015).

Google Scholar

[48] R.H.M. Siqueira, S.M. Carvalho, I.K.L. Kam, R. Riva and M.S.F. Lima, Laser beam forming of aeronautical aluminum parts, Proceedings of the 70th Annual Congress of the Brazilian Association of Metallurgy, Materials and Mining (ABM), Rio de Janeiro, 2015, CD.

Google Scholar

[49] M.S.F. Lima and S. Sankare, Microstructure and mechanical behavior of laser additive manufactured AISI 316 stainless steel stringers, Materials and Design 55 (2014) 526-532.

DOI: 10.1016/j.matdes.2013.10.016

Google Scholar

[50] M.C. Cunha, Laser heating of high strength aluminum alloys for enhanced toughness for crack propagation, Thesis (Ph. D, ), Instituto Tecnologico de Aeronautica, Director: M.S.F. Lima, in course, (2015).

Google Scholar

[51] C Bezençon, A Schnell and W Kurz, Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding, Scripta Materialia 49 (2003) 705-709.

DOI: 10.1016/s1359-6462(03)00369-5

Google Scholar

[52] I. Alves, Laser texturing of aerospace metallic materials, Project funding 01. 09. 0546. 00 - Brazilian Navy. Supervisor: M.S.F. Lima, (2015).

Google Scholar

[53] R. Viana, M. S. F. Lima, W. F. Sales, W. M. Silva Jr. and A. R. Machado, Laser texturing of substrate of coated tools - Performance during machining and in adhesion tests, Surface and Coatings Technology, Available on http: /dx. doi. org/10. 1016/j. surfcoat. 2015. 06. 025.

DOI: 10.1016/j.surfcoat.2015.06.025

Google Scholar

[54] L.M. Machado, R.E. Samad, A.Z. Freitas, N.D. Vieira and W. de Rossi, Microchannels Direct Machining using the Femtosecond Smooth Ablation Method, Physics Procedia 12 (2011) 67-75.

DOI: 10.1016/j.phpro.2011.03.107

Google Scholar

[55] Avaliable on http: /www. calphad. com/iron-carbon. html.

Google Scholar

[56] Avaliable on http: /www. thermocalc. com.

Google Scholar

[57] W.G. Vermeulen, P.F. Morris, A.D. Weijer and S. Van der Zwaag, Prediction of martensite start temperature using artificial neural networks, Ironmaking and Steelmaking 23 (1996) 433-437.

Google Scholar

[58] J.C. Zhao and M.R. Notis, Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: a phenomenological rationalization of experimental observations, Materials Science and Engineeering R15 (1995) 135-208.

DOI: 10.1016/0927-796x(95)00183-2

Google Scholar

[59] T. Kim, M.R. Pillai, M.J. Aziz, A. Scarpulla, D.O. Dubon, K.M. Yu, J. W. Beeman and M.C. Ridgway, Heat flow model for pulsed laser melting and rapid solidification of ion implanted GaAs, J. applied physics 108 (2010) 013508.

DOI: 10.1063/1.3457106

Google Scholar

[60] E. Hornbogen, On the martensite start temperature Ms, Z. Metallkunde 75 (1984) 741-746.

Google Scholar

[61] M. Palumbo, Thermodynamics of martensitic transformations in the framework of the CALPHAD approach, Computer Coupling of Phase Diagrams and Thermochemistry 32 (2008) 693-708.

DOI: 10.1016/j.calphad.2008.08.006

Google Scholar

[62] G.R. Speich and W.C. Leslie, Tempering of Steel, Metallurgical Transactions 3 (1972) 1043- 1054.

DOI: 10.1007/bf02642436

Google Scholar

[63] M.S.F. Lima and W. Kurz, Massive transformation and absolute stability, Metallurgical and Materials Transactions A 33 (2002) 2337-2345.

DOI: 10.1007/s11661-002-0357-1

Google Scholar

[64] M. Vandyoussefi, H.W. Kerra and W. Kurz, Two-phase growth in peritectic Fe-Ni alloys, Acta Materialia 48 (2000) 2297-2306.

DOI: 10.1016/s1359-6454(00)00034-3

Google Scholar

[65] D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, 2nd Edition, CRC Press, 1992, p.419.

Google Scholar

[66] Information on https: /en. wikipedia. org/wiki/Titanium.

Google Scholar

[67] J.W. Christian, The theory of transformations in metals and alloys, 2nd Edition, Part I - equilibrium and general kinectic theory, Elsevier, Amsterndam, 1975, pp.1-20.

Google Scholar

[68] G. Luetjering and J.C. William, Titanium, Springer, Berlin, 2003, 79p.

Google Scholar

[69] S.M.L. Sastry, T.C. Peng, P.J. Meschter and J.E. O'Neal, Rapid Solidification Processing of Titanium Alloys, JOM: Journal of the Minerals, metals, and Materials Society 35 (1983) 21-28.

DOI: 10.1007/bf03338360

Google Scholar

[70] S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo and S. Zwaag, Prediction of the martensite start temperature for β titanium alloys as a function of composition, Scripta Materialia 60 (2009) 611-614.

DOI: 10.1016/j.scriptamat.2008.12.034

Google Scholar

[71] S.M. Carvalho, C.A.R.P. Baptista and M.S.F. Lima, Simulating the damage accumulation in aircraft bleed system ducts joined by laser and arc welding processes, Procedia Engineering 10 (2011) 1321-1326.

DOI: 10.1016/j.proeng.2011.04.220

Google Scholar

[72] V.N. Moiseev, V. Polyak and A.Y. Sokolova, Martensite strengthening of titanium alloys, Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 8, 1975, pp.45-49.

Google Scholar

[73] B. Hill, Titanium Use in Aerospace Applications, Industrial Heating Website, information on http: /www. industrialheating. com/Articles/Feature_Article/BNP_GUID_9-5- 2006_A_10000000000000198869.

Google Scholar

[74] A. Squillace, U. Prisco, S. Ciliberto, A. Astarita, Effect of welding parameters on morphology and mechanical properties of Ti-6Al-4V laser beam welded butt joints, Journal of Materials Processing Technology 212 (2012) 427-436.

DOI: 10.1016/j.jmatprotec.2011.10.005

Google Scholar

[75] T. Ahmed and H.J. Rack, Phase transformations during cooling in α - β titanium alloys. Mater. Sci. Eng. A. 243 (1998) 206-211.

Google Scholar

[76] M.S.F. Lima, B.J. Cortelli, H.R. Simoni, S.M. Carvalho and D. Neves, Laser beam welding of Ti-6Al-4V, 70 annual congresso of the Brazilian Society of Metallurgy, Materials and Mining, 2015, Rio de Janeiro, RJ, Brazil.

Google Scholar

[77] N. Mirhosseini, P.L. Crouse, M.J.J. Schmidth, L. Li and D. Garrod, Laser surface microtexturing of Ti-6Al-4V substrates for improved cell integration, Applied Surface Science 253 (2007) 7738-7743.

DOI: 10.1016/j.apsusc.2007.02.168

Google Scholar

[78] J.F. Ready, Industrial Applications of Lasers, 2nd edition, San Diego: Academic Press, 1977, p.316.

Google Scholar

[79] M.S.F. Lima, F.Y. Sakata, S.M. Carvalho, A.G. Ramos and R. Riva, Microstructural characteristics of titanium alloys after laser surface modification In: IX Brazilian Materials Research Society Meeting (B-MRS), 2010, Ouro Preto, MG, Brazil.

Google Scholar

[80] S. Tacke, T. Roming and K. Edelmann, Arrangement of two fuselage sections of an aircraft and a connecting structure for connecting fuselage skins, United States Patent US 8, 353, 479 B2, Jan. 15, 2013, 10 p.

Google Scholar

[81] I. Roetzer, Laser-beam welding makes aircraft lighter, Fraunhofer Magazine 1 (2005) 36-37.

Google Scholar

[82] R.H.M. Siqueira, A.C. Oliveira, R. Riva, A.J. Abdalla, C.A.R.P. Baptista, M.S.F. Lima, Mechanical and microstructural characterization of laser-welded joints of 6013-T4 aluminum alloy, International Journal of Advanced Manufacturing Technology 37 (2015).

DOI: 10.4028/www.scientific.net/amr.891-892.1767

Google Scholar

[83] C. Sigli, L. Maenner, C. Sztur and R. Shahani, Phase diagram, solidification and heat treatment of aluminium alloys, Proc. International Conference on Aluminum Alloys, T. Sato, S. Kumai, T. Kobayashi and Y. Murakami Eds, JILM, 1998, pp.87-98.

Google Scholar

[84] R.H.M. Siqueira, M.S.F. Lima, A.J. Abdalla, C.A.R.P. Baptista and R. Riva, Microstructural and Mechanical Characterization of Laser Welded and Heat-Treated AA6013 Aluminum Alloy, Conference: XI Brazilian MRS Meeting, Florianopolis, (2012).

Google Scholar

[85] T.A. Barnes and I.R. Pashby, Joining techniques for aluminium spaceframes used in automobiles. Part I - solid and liquid phase welding, Journal of Materials Processing Technology 99 (2000) 62-71.

DOI: 10.1016/s0924-0136(99)00367-2

Google Scholar

[86] W.I. Pumphrey and P.H. Jennings, A consideration of the nature of brittleness and temperature above the solidus in castings and welds in aluminum alloys, J. Inst. Metals 75 (1948) 235-256.

Google Scholar

[87] W. Kurz and D.J. Fisher, Fundamentals of Solidification, 3rd edition, Transtech Publications, Lausanne, 1992, 305p.

Google Scholar

[88] T.W. Clyne and G.J. Davies, Solidification and casting of metals, Metals Society, London, 1979, p.275.

Google Scholar

[89] M. Rappaz, J. -M. Drezet and M. Gremaud, A new hot tearing criterion, Met. Mat. Trans. 30A (1999) 449-455.

DOI: 10.1007/s11661-999-0334-z

Google Scholar

[90] J. -M. Drezet and M.S.F. Lima, On the use of double laser source for crack-free welds of aluminium alloys, In: LASERAP'6 Applications des Lasers de Puissance, 2007, Saint-Léger-sousBeuvray. Proceedings of LaserAp'6, (2007).

Google Scholar

[91] L. Abbaschian and M.S.F. Lima, Cracking susceptibility of aluminum alloys during laser welding, Materials Research 6 (2003) 273-278.

DOI: 10.1590/s1516-14392003000200024

Google Scholar