Industrial Applications of Hard and Superhard Nanocomposite Coatings on Tools for Machining, Forming, Stamping and Injection Molding

Article Preview

Abstract:

The design and application of hard and superhard (H ≥ 40 GPa) coatings and their properties are discussed with the focus on superhard nanocomposites. The main part of the article deals with examples of industrial applications of hard and superhard nanocomposite coatings as wear protection coatings on tools for machining, forming, stamping, injection molding and the like. The advantages and possibilities as well as the limitations of the different types of coatings with emphasis on the nanocomposites are discussed and illustrated by a number of examples from aerospace and other branches of industry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

218-233

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Veprek, Plasma induced and plasma assisted chemical vapour deposition, Thin Solid Films 130 (1985) 135-154.

DOI: 10.1016/0040-6090(85)90303-7

Google Scholar

[2] T. Cselle. A. Barimani, Today's applications and future developments of coatings for drills and rotating cutting tools, Surf. Coat. Technol. 76-77 (1995) 712-718.

DOI: 10.1016/0257-8972(96)80011-9

Google Scholar

[3] P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clements, Microstructural design of hard coatings, Progr. Mater. Sci. 51 (2006) 1032-1114.

DOI: 10.1016/j.pmatsci.2006.02.002

Google Scholar

[4] M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Comp. 483 (2009) 321-333.

DOI: 10.1016/j.jallcom.2008.08.133

Google Scholar

[5] W. Kalss, R. Reiter, V. Deflinger, C. Gey, J.L. Endrino, Modern coatings in high performance cutting applications Int. J. Refract. Metals Hard Mater. 24 (2006) 399–404.

DOI: 10.1016/j.ijrmhm.2005.11.005

Google Scholar

[6] A. Erdemir, O. L Eryilmaz, M. Urgen, K. Kazmanli, N. Mehta, B. Prorok, Tribology of nanostructured and composite coatings, in Handbook of Nanomaterials, Y. Gogotsi, ed., CRC Publication Boca Ratton, FL. 2005, pp.685-711.

DOI: 10.1201/9781420004014.ch25

Google Scholar

[7] S. Veprek, M.G.J. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surf. Coat. Technol. 202 (2008) 5063-5073.

DOI: 10.1016/j.surfcoat.2008.05.038

Google Scholar

[8] A. Inspektor, P.A. Salvador, Architecture of PVD coatings for metalcutting applications: A review, Surf. Coat. Technol. 257 (2014) 138-153.

DOI: 10.1016/j.surfcoat.2014.08.068

Google Scholar

[9] B. D. Beake, G. S. Fox Rabinowich, Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining, Surf. Coat. Technol. 255 (2014) 102–111.

DOI: 10.1016/j.surfcoat.2014.02.062

Google Scholar

[10] M. Sokovic, B. Barisic, S. Sladic, Model of quality management of hard coatings on ceramic cutting tools, J. Mater. Process. Technol. 209 (2009) 4207-4216.

Google Scholar

[11] A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, Oxford, (2008).

Google Scholar

[12] T. Zhu, J. Li, S. Ogata, S. Yip, Mechanics of ultra-strength materials, MRS Bull. 34 (2009) 167-172.

DOI: 10.1557/mrs2009.47

Google Scholar

[13] S. Yip, Nanocrystals: The strongest size, Nature 391 (1998) 532-533; Nanocrystalline metals: Mapping plasticity, Nature Mater. 3 (2004) 11-12.

DOI: 10.1038/35254

Google Scholar

[14] S. Veprek, M.G.J. Veprek-Heijman, Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature, Thin Solid Films 522 (2012) 274-282.

DOI: 10.1016/j.tsf.2012.08.048

Google Scholar

[15] P.B. Barna, M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films 317 (1998) 27-33.

DOI: 10.1016/s0040-6090(97)00503-8

Google Scholar

[16] I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21 (2003) S117-S128.

DOI: 10.1116/1.1601610

Google Scholar

[17] P. Rogl and J.C. Schuster, Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems, ASM Int. The Materials Information Soc., Materials Park, OH, (1992).

Google Scholar

[18] R.F. Zhang, S. Veprek, On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system, Mater. Sci. Eng. A 424 (2006) 128-137.

DOI: 10.1016/j.msea.2006.03.017

Google Scholar

[19] D.A. Porter, K.E. Easterling, Phase Transormations in Metals and Alloys, second ed., Nelson Thornes Ltd. Cheltenham (2001).

Google Scholar

[20] H. Schmalzried, Chemical Kinetic of Solids, VCH, Weinheim (1995).

Google Scholar

[21] W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Ultrastrong Mg Alloy via Nano-spaced Stacking Faults, Mater. Res. Lett. 1 (2013) 61-67.

DOI: 10.1080/21663831.2013.765927

Google Scholar

[22] Y. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y. Hang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L.M. Wang, B. Weng, J. He, Z. Liu, Ultrahard nanotwinned cubic boron nitride, Nature 493 (2013) 385-388.

DOI: 10.1038/nature11728

Google Scholar

[23] Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y Nanotwinned Diamond with Unprecedented Hardness and Stability, Nature 510 (2014) 250-253.

DOI: 10.1038/nature13381

Google Scholar

[24] B. Xu, Y. Tian, Ultrahardness: Measurement and Enhancement, J. Phys. Chem. 119 (2015) 5633-5638.

DOI: 10.1021/acs.jpcc.5b00017

Google Scholar

[25] S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films 268 (1995) 64-71.

DOI: 10.1016/0040-6090(95)06695-0

Google Scholar

[26] S. Veprek, M. Haussmann, S. Reiprich, Superhard nanocrystalline W2N/amorphous Si3N4 composite materials, J. Vac. Sci. Technol. A 14 (1996) 46-51.

DOI: 10.1116/1.579878

Google Scholar

[27] S. Christiansen, M. Albrecht, H.P. Strunk, S. Veprek, Microstructure of novel superhard nanocrystalline-amorphous composites as analyzed by high resolution transmission electron microscopy, J. Vac. Sci. Technol. B 16 (1998) 19-22.

DOI: 10.1116/1.589778

Google Scholar

[28] S. Veprek, The recent search for new superhards materials: Go nano!, J. Vac. Sci. Technol. A 31 (2013) 050822-1-33.

Google Scholar

[29] Unfortunately, the impurities are not reported in the majority of the papers, and when they are reported, the impurity content amounts up to several at. %. Such coatings, although often called nanocomposites, have nothing common with the superhard nanocomposites discussed herein.

Google Scholar

[30] S. Veprek, P. Karvankova, M.G.J. Veprek-Heijman, Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites, J. Vac. Sci. Technol. B 23 (2005) L17-L21.

DOI: 10.1116/1.2131086

Google Scholar

[31] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. -D. Männling, P. Nesladek, G. Dollinger, A. Bergmaier, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV= 80 to ≥ 105 GPa, Surf. Coat. Technol. 133-134 (2000).

DOI: 10.1016/s0257-8972(00)00957-9

Google Scholar

[32] S. Veprek, M.G. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films 476 (2005) 1-29.

DOI: 10.1016/j.tsf.2004.10.053

Google Scholar

[33] N. Dubrovinskaia, V.L. Solozhenko, N. Miyajima, V. Dmitriev, A. O. Kurakevych, L. Dubrovinsky, Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness, Appl. Phys. Lett. 90 (2007) 101912.

DOI: 10.1063/1.2711277

Google Scholar

[34] R.F. Zhang, S.H. Sheng, S. Veprek, Stability of Ti-B-N solid solutions and the Formation of nc-TiN/a-BN Nanocomposites Studied by Combined ab initio and Thermodynamic Calculations, Acta Mater. 56 (2008) 4440-4449.

DOI: 10.1016/j.actamat.2008.04.066

Google Scholar

[35] P. Karvankova, M.G.J. Veprek-Heijman, D. Azinovic, S. Veprek, Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition, Surf. Coat. Technol. 200 (2006) 2978-2989.

DOI: 10.1016/j.surfcoat.2005.01.003

Google Scholar

[36] S. Veprek, M.G.J. Veprek-Heijman, Superhard and Ultrahard Nano-Structured Materials and Coatings, in: Microstructure-Property Correlations for Hard, Superhard and Ultrahard Materials, Ed. V. Kanyanta, Springer Int. Publishing, Cham, Switzerland, in press.

DOI: 10.1007/978-3-319-29291-5_6

Google Scholar

[37] V.I. Ivashchenko, S. Veprek, P.E.A. Turchi, V.I. Shevchenko, Comparative first-principles study of TiN/SiNx(TiN interfaces, Phys. Rev. B 85 (2012) 195403.

DOI: 10.1103/physrevb.86.014110

Google Scholar

[38] V.I. Ivashchenko, S. Veprek, P.E.A. Turchi, V.I. Shevchenko, First-principles study of the TiN/SiC/TiN interfaces in superhard nanocomposites, Phys. Rev. B 86 (2012) 014110.

DOI: 10.1103/physrevb.86.014110

Google Scholar

[39] V.I. Ivashchenko, S. Veprek, First-principles molecular dynamics study of the thermal stability of the BN, AlN, SiC and SiN interfacial layers in TiN-based heterostructures: Comparison with experiments, Thin Solid Films 545 (2013) 391–400.

DOI: 10.1016/j.tsf.2013.08.047

Google Scholar

[40] V.I. Ivashchenko, S. Veprek, P.E.A. Turchi, V.I. Shevchenko, J. Leszczynski, L. Gorb, F. Hill, First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures, Thin Solid Films 564 (2014).

DOI: 10.1016/j.tsf.2014.05.036

Google Scholar

[41] V.I. Ivashchenko, S. Veprek, A.S. Argon, P.E.A. Turchi, L. Gorb, F. Hill, J. Leszczynski, First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites, Thin Solid Films 578 (2015).

DOI: 10.1016/j.tsf.2015.02.013

Google Scholar

[42] S. Veprek, S. Mukherjee, P. Karvankova, H. -D. Männling, J.L. He, K. Moto, J. Prochazka, A.S. Argon, Limits to the strength of super- and ultrahard nanocomposite coatings, J. Vac. Sci. Technol. A 21 (2003) 532-544.

DOI: 10.1116/1.1558586

Google Scholar

[43] S.G. Prilliman, S.M. Clark, A.P. Alivisatos, P. Karvankova, S. Veprek, Strain and deformation in ultra-hard nanocomposites nc-TiN/a-BN under hydrostatic pressure, Mater. Sci. Eng. A 437 (2006) 379–387.

DOI: 10.1016/j.msea.2006.07.126

Google Scholar

[44] M.G.J. Veprek-Heijman, R.G. Veprek, A.S. Argon, D.M. Parks, S. Veprek, Surf. Coat. Technol. 203 (2009) 3385–3391.

DOI: 10.1016/j.surfcoat.2009.04.028

Google Scholar

[45] M.G.J. Veprek-Heijman, S. Veprek, Measurements of Hardness and other Mechanical Properties of Hard and Superhard Materials and Coatings, in: V. Kanyanta, Microstructure-Property Correlations for Hard, Superhard and Ultrahard Materials, Springer Int. Publishing, Cham, Switzerland, in press; Surf. Coat. Technol. in press.

DOI: 10.1007/978-3-319-29291-5_4

Google Scholar

[46] M.K. Samani, X.Z. Ding, S. Amini, N. Khosravian, J.Y. Cheong, G. Chen, B.K. Tay, Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc, Thin Solid Films 537 (2013) 108–112.

DOI: 10.1016/j.tsf.2013.04.029

Google Scholar

[47] J. Martan, P. Benes, Thermal properties of cutting tool coatings at high temperatures, Thermochimica Acta 539 (2012) 51– 55.

DOI: 10.1016/j.tca.2012.03.029

Google Scholar

[48] M.K. Samani, X.Z. Ding, N. Khosravian, B. Amin-Ahmadi, Yang Yi, G. Chen, E.C. Neyts, A. Bogaerts, B.K. Tay, Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc, Thin Solid Films 578 (2015).

DOI: 10.1016/j.tsf.2015.02.032

Google Scholar

[49] www. shm-cz. cz.

Google Scholar

[50] M. Jilek, P. Holubar, M.G.J. Veprek-Heijman, S. Veprek, Towards the industrialization of superhard nanocrystalline composites for high speed and dry machining, Mater. Res. Soc. Symp. Proc. 750 (2003) 393-396.

DOI: 10.1557/proc-750-y4.2

Google Scholar

[51] www. platit. com.

Google Scholar

[52] M. Jilek, T. Cselle, P. Holubar, M. Morstein, M.G.J. Veprek-Heijman, S. Veprek, Development of Novel Coating Technology by Vacuum Arc with Rotating Cathodes for Industrial Production of nc-(Al1-xTix)N/a-Si3N4 Superhard Nanocomposite Coatings for Dry, Hard Machining, Plasma Chem. Plasma Processing 24 (2004).

DOI: 10.1007/s11090-004-7929-3

Google Scholar

[53] SHM, Pramet Tools, Advanced PVD coatings for milling of rails, MM Prumyslove Spektrum 6 (2014) 64-66 (in Czech). The article can be found under http: /www. mmspektrum. com/clanek/progresivni-pvd-povlaky-pro-frezovani-kolejnic. html.

Google Scholar

[54] M. Kong, J. Dai, J. Lao, G. Li, Crystallization of amorphous SiC and superhardness effect in TiN/SiC nanomultilayers, Appl. Surf. Sci. 253 (2007) 4734–4739.

DOI: 10.1016/j.apsusc.2006.10.050

Google Scholar

[55] S. Veprek, M. Haussmann, S. Reiprich, Li Shizhi, J. Dian, Novel thermodynamically stable and oxidation resistant superhard coating materials, Surf. Coat. Technol. 86-87 (1996) 394-401.

DOI: 10.1016/s0257-8972(96)02988-x

Google Scholar

[56] D.G. Sangiovanni, L. Hultman, V. Chirita, Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration, Acta Materialia 59 (2011) 2121–2134.

DOI: 10.1016/j.actamat.2010.12.013

Google Scholar

[57] www. lmt-tools. com.

Google Scholar