[1]
S. Veprek, Plasma induced and plasma assisted chemical vapour deposition, Thin Solid Films 130 (1985) 135-154.
DOI: 10.1016/0040-6090(85)90303-7
Google Scholar
[2]
T. Cselle. A. Barimani, Today's applications and future developments of coatings for drills and rotating cutting tools, Surf. Coat. Technol. 76-77 (1995) 712-718.
DOI: 10.1016/0257-8972(96)80011-9
Google Scholar
[3]
P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clements, Microstructural design of hard coatings, Progr. Mater. Sci. 51 (2006) 1032-1114.
DOI: 10.1016/j.pmatsci.2006.02.002
Google Scholar
[4]
M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, Concepts for the design of advanced nanoscale PVD multilayer protective thin films. J. Alloys Comp. 483 (2009) 321-333.
DOI: 10.1016/j.jallcom.2008.08.133
Google Scholar
[5]
W. Kalss, R. Reiter, V. Deflinger, C. Gey, J.L. Endrino, Modern coatings in high performance cutting applications Int. J. Refract. Metals Hard Mater. 24 (2006) 399–404.
DOI: 10.1016/j.ijrmhm.2005.11.005
Google Scholar
[6]
A. Erdemir, O. L Eryilmaz, M. Urgen, K. Kazmanli, N. Mehta, B. Prorok, Tribology of nanostructured and composite coatings, in Handbook of Nanomaterials, Y. Gogotsi, ed., CRC Publication Boca Ratton, FL. 2005, pp.685-711.
DOI: 10.1201/9781420004014.ch25
Google Scholar
[7]
S. Veprek, M.G.J. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surf. Coat. Technol. 202 (2008) 5063-5073.
DOI: 10.1016/j.surfcoat.2008.05.038
Google Scholar
[8]
A. Inspektor, P.A. Salvador, Architecture of PVD coatings for metalcutting applications: A review, Surf. Coat. Technol. 257 (2014) 138-153.
DOI: 10.1016/j.surfcoat.2014.08.068
Google Scholar
[9]
B. D. Beake, G. S. Fox Rabinowich, Progress in high temperature nanomechanical testing of coatings for optimising their performance in high speed machining, Surf. Coat. Technol. 255 (2014) 102–111.
DOI: 10.1016/j.surfcoat.2014.02.062
Google Scholar
[10]
M. Sokovic, B. Barisic, S. Sladic, Model of quality management of hard coatings on ceramic cutting tools, J. Mater. Process. Technol. 209 (2009) 4207-4216.
Google Scholar
[11]
A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, Oxford, (2008).
Google Scholar
[12]
T. Zhu, J. Li, S. Ogata, S. Yip, Mechanics of ultra-strength materials, MRS Bull. 34 (2009) 167-172.
DOI: 10.1557/mrs2009.47
Google Scholar
[13]
S. Yip, Nanocrystals: The strongest size, Nature 391 (1998) 532-533; Nanocrystalline metals: Mapping plasticity, Nature Mater. 3 (2004) 11-12.
DOI: 10.1038/35254
Google Scholar
[14]
S. Veprek, M.G.J. Veprek-Heijman, Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature, Thin Solid Films 522 (2012) 274-282.
DOI: 10.1016/j.tsf.2012.08.048
Google Scholar
[15]
P.B. Barna, M. Adamik, Fundamental structure forming phenomena of polycrystalline films and the structure zone models, Thin Solid Films 317 (1998) 27-33.
DOI: 10.1016/s0040-6090(97)00503-8
Google Scholar
[16]
I. Petrov, P.B. Barna, L. Hultman, J.E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. A 21 (2003) S117-S128.
DOI: 10.1116/1.1601610
Google Scholar
[17]
P. Rogl and J.C. Schuster, Phase Diagrams of Ternary Boron Nitride and Silicon Nitride Systems, ASM Int. The Materials Information Soc., Materials Park, OH, (1992).
Google Scholar
[18]
R.F. Zhang, S. Veprek, On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system, Mater. Sci. Eng. A 424 (2006) 128-137.
DOI: 10.1016/j.msea.2006.03.017
Google Scholar
[19]
D.A. Porter, K.E. Easterling, Phase Transormations in Metals and Alloys, second ed., Nelson Thornes Ltd. Cheltenham (2001).
Google Scholar
[20]
H. Schmalzried, Chemical Kinetic of Solids, VCH, Weinheim (1995).
Google Scholar
[21]
W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Ultrastrong Mg Alloy via Nano-spaced Stacking Faults, Mater. Res. Lett. 1 (2013) 61-67.
DOI: 10.1080/21663831.2013.765927
Google Scholar
[22]
Y. Tian, B. Xu, D. Yu, Y. Ma, Y. Wang, Y. Hang, W. Hu, C. Tang, Y. Gao, K. Luo, Z. Zhao, L.M. Wang, B. Weng, J. He, Z. Liu, Ultrahard nanotwinned cubic boron nitride, Nature 493 (2013) 385-388.
DOI: 10.1038/nature11728
Google Scholar
[23]
Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y Nanotwinned Diamond with Unprecedented Hardness and Stability, Nature 510 (2014) 250-253.
DOI: 10.1038/nature13381
Google Scholar
[24]
B. Xu, Y. Tian, Ultrahardness: Measurement and Enhancement, J. Phys. Chem. 119 (2015) 5633-5638.
DOI: 10.1021/acs.jpcc.5b00017
Google Scholar
[25]
S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films 268 (1995) 64-71.
DOI: 10.1016/0040-6090(95)06695-0
Google Scholar
[26]
S. Veprek, M. Haussmann, S. Reiprich, Superhard nanocrystalline W2N/amorphous Si3N4 composite materials, J. Vac. Sci. Technol. A 14 (1996) 46-51.
DOI: 10.1116/1.579878
Google Scholar
[27]
S. Christiansen, M. Albrecht, H.P. Strunk, S. Veprek, Microstructure of novel superhard nanocrystalline-amorphous composites as analyzed by high resolution transmission electron microscopy, J. Vac. Sci. Technol. B 16 (1998) 19-22.
DOI: 10.1116/1.589778
Google Scholar
[28]
S. Veprek, The recent search for new superhards materials: Go nano!, J. Vac. Sci. Technol. A 31 (2013) 050822-1-33.
Google Scholar
[29]
Unfortunately, the impurities are not reported in the majority of the papers, and when they are reported, the impurity content amounts up to several at. %. Such coatings, although often called nanocomposites, have nothing common with the superhard nanocomposites discussed herein.
Google Scholar
[30]
S. Veprek, P. Karvankova, M.G.J. Veprek-Heijman, Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites, J. Vac. Sci. Technol. B 23 (2005) L17-L21.
DOI: 10.1116/1.2131086
Google Scholar
[31]
S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. -D. Männling, P. Nesladek, G. Dollinger, A. Bergmaier, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with HV= 80 to ≥ 105 GPa, Surf. Coat. Technol. 133-134 (2000).
DOI: 10.1016/s0257-8972(00)00957-9
Google Scholar
[32]
S. Veprek, M.G. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films 476 (2005) 1-29.
DOI: 10.1016/j.tsf.2004.10.053
Google Scholar
[33]
N. Dubrovinskaia, V.L. Solozhenko, N. Miyajima, V. Dmitriev, A. O. Kurakevych, L. Dubrovinsky, Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness, Appl. Phys. Lett. 90 (2007) 101912.
DOI: 10.1063/1.2711277
Google Scholar
[34]
R.F. Zhang, S.H. Sheng, S. Veprek, Stability of Ti-B-N solid solutions and the Formation of nc-TiN/a-BN Nanocomposites Studied by Combined ab initio and Thermodynamic Calculations, Acta Mater. 56 (2008) 4440-4449.
DOI: 10.1016/j.actamat.2008.04.066
Google Scholar
[35]
P. Karvankova, M.G.J. Veprek-Heijman, D. Azinovic, S. Veprek, Properties of superhard nc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition, Surf. Coat. Technol. 200 (2006) 2978-2989.
DOI: 10.1016/j.surfcoat.2005.01.003
Google Scholar
[36]
S. Veprek, M.G.J. Veprek-Heijman, Superhard and Ultrahard Nano-Structured Materials and Coatings, in: Microstructure-Property Correlations for Hard, Superhard and Ultrahard Materials, Ed. V. Kanyanta, Springer Int. Publishing, Cham, Switzerland, in press.
DOI: 10.1007/978-3-319-29291-5_6
Google Scholar
[37]
V.I. Ivashchenko, S. Veprek, P.E.A. Turchi, V.I. Shevchenko, Comparative first-principles study of TiN/SiNx(TiN interfaces, Phys. Rev. B 85 (2012) 195403.
DOI: 10.1103/physrevb.86.014110
Google Scholar
[38]
V.I. Ivashchenko, S. Veprek, P.E.A. Turchi, V.I. Shevchenko, First-principles study of the TiN/SiC/TiN interfaces in superhard nanocomposites, Phys. Rev. B 86 (2012) 014110.
DOI: 10.1103/physrevb.86.014110
Google Scholar
[39]
V.I. Ivashchenko, S. Veprek, First-principles molecular dynamics study of the thermal stability of the BN, AlN, SiC and SiN interfacial layers in TiN-based heterostructures: Comparison with experiments, Thin Solid Films 545 (2013) 391–400.
DOI: 10.1016/j.tsf.2013.08.047
Google Scholar
[40]
V.I. Ivashchenko, S. Veprek, P.E.A. Turchi, V.I. Shevchenko, J. Leszczynski, L. Gorb, F. Hill, First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures, Thin Solid Films 564 (2014).
DOI: 10.1016/j.tsf.2014.05.036
Google Scholar
[41]
V.I. Ivashchenko, S. Veprek, A.S. Argon, P.E.A. Turchi, L. Gorb, F. Hill, J. Leszczynski, First-principles quantum molecular calculations of structural and mechanical properties of TiN/SiNx heterostructures, and the achievable hardness of the nc-TiN/SiNx nanocomposites, Thin Solid Films 578 (2015).
DOI: 10.1016/j.tsf.2015.02.013
Google Scholar
[42]
S. Veprek, S. Mukherjee, P. Karvankova, H. -D. Männling, J.L. He, K. Moto, J. Prochazka, A.S. Argon, Limits to the strength of super- and ultrahard nanocomposite coatings, J. Vac. Sci. Technol. A 21 (2003) 532-544.
DOI: 10.1116/1.1558586
Google Scholar
[43]
S.G. Prilliman, S.M. Clark, A.P. Alivisatos, P. Karvankova, S. Veprek, Strain and deformation in ultra-hard nanocomposites nc-TiN/a-BN under hydrostatic pressure, Mater. Sci. Eng. A 437 (2006) 379–387.
DOI: 10.1016/j.msea.2006.07.126
Google Scholar
[44]
M.G.J. Veprek-Heijman, R.G. Veprek, A.S. Argon, D.M. Parks, S. Veprek, Surf. Coat. Technol. 203 (2009) 3385–3391.
DOI: 10.1016/j.surfcoat.2009.04.028
Google Scholar
[45]
M.G.J. Veprek-Heijman, S. Veprek, Measurements of Hardness and other Mechanical Properties of Hard and Superhard Materials and Coatings, in: V. Kanyanta, Microstructure-Property Correlations for Hard, Superhard and Ultrahard Materials, Springer Int. Publishing, Cham, Switzerland, in press; Surf. Coat. Technol. in press.
DOI: 10.1007/978-3-319-29291-5_4
Google Scholar
[46]
M.K. Samani, X.Z. Ding, S. Amini, N. Khosravian, J.Y. Cheong, G. Chen, B.K. Tay, Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc, Thin Solid Films 537 (2013) 108–112.
DOI: 10.1016/j.tsf.2013.04.029
Google Scholar
[47]
J. Martan, P. Benes, Thermal properties of cutting tool coatings at high temperatures, Thermochimica Acta 539 (2012) 51– 55.
DOI: 10.1016/j.tca.2012.03.029
Google Scholar
[48]
M.K. Samani, X.Z. Ding, N. Khosravian, B. Amin-Ahmadi, Yang Yi, G. Chen, E.C. Neyts, A. Bogaerts, B.K. Tay, Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc, Thin Solid Films 578 (2015).
DOI: 10.1016/j.tsf.2015.02.032
Google Scholar
[49]
www. shm-cz. cz.
Google Scholar
[50]
M. Jilek, P. Holubar, M.G.J. Veprek-Heijman, S. Veprek, Towards the industrialization of superhard nanocrystalline composites for high speed and dry machining, Mater. Res. Soc. Symp. Proc. 750 (2003) 393-396.
DOI: 10.1557/proc-750-y4.2
Google Scholar
[51]
www. platit. com.
Google Scholar
[52]
M. Jilek, T. Cselle, P. Holubar, M. Morstein, M.G.J. Veprek-Heijman, S. Veprek, Development of Novel Coating Technology by Vacuum Arc with Rotating Cathodes for Industrial Production of nc-(Al1-xTix)N/a-Si3N4 Superhard Nanocomposite Coatings for Dry, Hard Machining, Plasma Chem. Plasma Processing 24 (2004).
DOI: 10.1007/s11090-004-7929-3
Google Scholar
[53]
SHM, Pramet Tools, Advanced PVD coatings for milling of rails, MM Prumyslove Spektrum 6 (2014) 64-66 (in Czech). The article can be found under http: /www. mmspektrum. com/clanek/progresivni-pvd-povlaky-pro-frezovani-kolejnic. html.
Google Scholar
[54]
M. Kong, J. Dai, J. Lao, G. Li, Crystallization of amorphous SiC and superhardness effect in TiN/SiC nanomultilayers, Appl. Surf. Sci. 253 (2007) 4734–4739.
DOI: 10.1016/j.apsusc.2006.10.050
Google Scholar
[55]
S. Veprek, M. Haussmann, S. Reiprich, Li Shizhi, J. Dian, Novel thermodynamically stable and oxidation resistant superhard coating materials, Surf. Coat. Technol. 86-87 (1996) 394-401.
DOI: 10.1016/s0257-8972(96)02988-x
Google Scholar
[56]
D.G. Sangiovanni, L. Hultman, V. Chirita, Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration, Acta Materialia 59 (2011) 2121–2134.
DOI: 10.1016/j.actamat.2010.12.013
Google Scholar
[57]
www. lmt-tools. com.
Google Scholar