Application of Shunted Piezoelectric Materials in Aeroelasticity

Article Preview

Abstract:

This paper presents a numerical study on the influence of multimodal shunt circuit parameters in the flutter velocity of a typical section under an unsteady airflow. Flutter on typical sections is a kind of self-excited oscillation which can occur due to the interaction with the airflow. In the flutter point, when the critical dynamic pressure is reached, the vibrations of the typical section become unstable and increase fast and significantly in time. As a result, it can lead the structure to failure. Thus, it becomes important to investigate the possibility of reducing the effects of flutter in order to increase the reliability of composite structures during service. In this work, the aero-electromechanical dynamic model formulation is based on the Hamilton principle. The unsteady aerodynamic forces are calculated based on the linearized thin-airfoil theory, proposed by Theodorsen. The passive element responsible for the energy dissipation is a multimodal resonant shunt circuit in series topology, attached to a piezoelectric patch. An iterative solution algorithm is proposed to solve the resultant nonlinear eigenvalue problem. The optimum shunt tuning is firstly performed using Hagood and Flotow’s propositions; then, it is used an heuristic optimization algorithm, based on Differential Evolution. The preliminary results indicate that the flutter speed can be affected by the passive control, both in its mechanical aspect as electrical.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-103

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rocha, W. F. Determinação da Velocidade de Instabilidade Aeroelástica de Asas Retangulares Constituídas de Materiais Compósitos em Regime de Voo Subsônico,. Dissertação de Mestrado, Instituto Tecnológico de Aeronáutica, ITA, São José dos Campos, SP : 84f., (1999).

DOI: 10.14393/19834071.2014.26671

Google Scholar

[2] Faria, A. W. Modelagem por Elementos Finitos de Placas Compostas dotadas de Sensores e Atuadores Piezelétricos: Implementação Computacional e Avaliação Numérica,. 152f., Dissertação de Mestrado, Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia, MG. : s. n., (2006).

DOI: 10.18605/2175-7275/cereus.v10n2p224-239

Google Scholar

[3] Silva, V. A. C. Concepção Robusta de Circuitos Elétricios Shunt Multimodais para o Controle Passivo de Vibrações de Estruturas Compostas,. Dissertação de Mestrado, 109f. : Universidade Federal de Uberlândia, (2014).

DOI: 10.14393/ufu.di.2014.424

Google Scholar

[4] Lima, A. M. G., Stoppa, M. H., Rade, D. A., Steffen Jr., V. Sensivity Analysis of Viscoelastic Structures,. Shock and Vibration. nº 4-5, 2006, Vol. 13, pgs. 545-558.

DOI: 10.1155/2006/917967

Google Scholar

[5] Carneiro, R. B. Controle Simi-ativo de Vibrações em Estruturas utilizando Amortecedor Magnetorreológico,. Tese de Doutorado : Faculdade de Tecnologia, Universidade de Brasília, 154f., (2009).

DOI: 10.47749/t/unicamp.2012.854353

Google Scholar

[6] McGowan, A. M. R. An examination of applying shunted piezoelectrics to reduce aeroelastic response,. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics. pgs. 553-572, (1999).

Google Scholar

[7] Agneni, A., Mastrooddi, F., Polli, G. M. Shunted piezoelectric patches in elastic and aeroelastic vibrations,. Computer & Structures. nº 2, 2003, Vol. 81, pgs. 91-105.

DOI: 10.1016/s0045-7949(02)00392-9

Google Scholar

[8] Luton, J. A., Mook, D. T. Numerical Simulation of Flutter and its Suppression by active control,. AIAA Journal. nº 12, 1993, Vol. 31, pgs. 2312-2319.

DOI: 10.2514/3.11930

Google Scholar

[9] Waszak, M. R., Srinathkumar, S. Flutter suppression for the active flexible wing: A classical design,. Journal of Aircraft. nº 1, 1995, Vol. 32, pgs. 61-67.

DOI: 10.2514/3.46684

Google Scholar

[10] Costa, T. F. G. Estudo Numérico de uma asa com controle ativo de flutter por realimentação da pressão medida num ponto,. s. l. : 144f., Dissertação de Mestrado, Escola de Engenharia de São Carlos da Universidade de São Paulo., (2007).

DOI: 10.11606/d.18.2007.tde-27112007-001723

Google Scholar

[11] Raja, S., Pashilkar, A.A., Sreedeed, R., Kamesh, J. V. Flutter control of a composite plate with piezoelectric multilayered actuators,. Aerospace Science and Technology. 2006, Vol. 10, pgs. 435-441.

DOI: 10.1016/j.ast.2006.01.003

Google Scholar

[12] Almeida, A. E. O Efeito de Enrijecimento por Tensão Piezeletricamente Induzida na Estabilidade Aeroelástica de Painéis Aeronáuticos,. 100f., Tese de Mestrado em Ciências - Instituto Tecnológico de Aeronáutica, São José dos Campos, SP : s. n., (2011).

DOI: 10.14393/19834071.2014.26671

Google Scholar

[13] Spencer Jr., B. F., Dyke, S. J., Sain, M. K., Carlson, J. D. Phenomenological Model for Magnetorreological Dampers,. Journal of Engineering Mechanics. nº 3, 1997, Vol. 123, pgs. 230-238.

DOI: 10.1061/(asce)0733-9399(1997)123:3(230)

Google Scholar

[14] D'Assunção, D. Circuito piezelétrico chaveado para controle de vibrações e coleta de energia em uma seção típica aeroelástica.,. Dissertação de Mestrado, apresentada ao programa de pós-graduação da Escola de Egenharia de São Carlos, da Universidade de São Paulo. : 108f., (2013).

DOI: 10.11606/d.18.2013.tde-18092013-144556

Google Scholar

[15] Clark, W. W. Vibration control with State-Switched piezoelectric materials,. Journal of Intelligent Material Systems and Structures. nº 4, 2000, Vol. 11, pgs. 263-271.

DOI: 10.1106/18ce-77k4-dymg-rkbb

Google Scholar

[16] Guyomar, D., Richard, C., Mohammadi, S. Semi-passive random vibration control, based on statistics.,. Journal of Sound and Vibrations. nº 3-5, 2007, Vol. 307, pgs. 818-833.

DOI: 10.1016/j.jsv.2007.07.008

Google Scholar

[17] Delpero, T., Lillo, L. Di, Bergamini, A., Ermanni, P.,. Piezoelectric vibration damping using autonomous synchronized switching on inductance.,. ASME 2011 Conference of Smart Materials, Adaptative Structures and Intelligent Systems, SMASIS 2011. 2011, Vol. 2, pgs. 427-433.

DOI: 10.1115/smasis2011-5239

Google Scholar

[18] Viana, F. A. C. Amortecimento de Vibrações usando Pastilhas Piezelétricas e Circuitos Shunt Ressonantes,. Dissertação de mestrado, 111f. : Universidade Federal de Uberlândia, (2005).

Google Scholar

[19] Hagood, N. W., Flotow, A. H. V. Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks,. Journal of Sound and Vibration. 1991, Vol. 146, pgs. 243-268.

DOI: 10.1016/0022-460x(91)90762-9

Google Scholar

[20] Saravanos, D. A. Passively damped laminated piezoelectric shell structures with integraded electric networks,. National Aeronautics ans Space Administration (NASA), Aerospace Institute. CR-1999-208871, 1999, pgs. 1-25.

DOI: 10.2514/6.1999-1543

Google Scholar

[21] Davis, C. L., Lesieutre, G. A. A modal strain-energy approach to the prediction of resistively shunted piezoceramic damping.,. Journal of Sound and Vibration . 1995, Vol. 197, pgs. 129-139.

DOI: 10.1006/jsvi.1995.0308

Google Scholar

[22] Plagianakos, T. S., Saravanos, D. A. Hybrid multidamped composite plates with viscoelastic composite plies and shunted piezoelectric layers.,. Journal of Intelligent Material Systems ans Structures. 2003, Vol. 14, pgs. 57-66.

DOI: 10.1177/1045389x03014001006

Google Scholar

[23] Theodorsen, T. General Theory of Aerodynamic Instability and the Mechanism of Flutter,. s. l. : NACA Report, (1935).

Google Scholar

[24] Bismarck-Nasr, M.N. Structural Dynamics in Aeronautical Engineering,. Reston, VA : AIAA Education Series, (1999).

Google Scholar

[25] Benini, G. R. Modelo Numérico para Simulação da Resposta Aeroelástica de Asas Fixas,. s. l. : 97f. Dissertação de Mestrado, Escola de Engenharia de São Carlos da Universidade de São Paulo., (2002).

DOI: 10.11606/d.18.2002.tde-14112002-193200

Google Scholar

[26] Walker, W. P. Optimization of Harmonically Deforming Thin Airfoil and Membrane Wings for Optimum Thrust and Efficiency,. Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial filfillment of the requirements for the degree of Doctor of Philosophy in Aerospace Engineering : s. n., (2012).

Google Scholar

[27] Song, Z. G. e Li, F. M., Active aeroelastic flutter analysis and vibration control of supersonic composite laminated plate., 2012, Composite Structures, Vol. 94, pp.702-713.

DOI: 10.1016/j.compstruct.2011.09.005

Google Scholar

[28] Almeida, A., Donadon, M. V., de Almeida, S.F.M., The effect of piezielectrically induced stress stiffening on the aeroelastic stability of curved composite planel,., 2012, Composite Structures.

DOI: 10.1016/j.compstruct.2012.06.008

Google Scholar

[29] Kouchakzadeh, M. A, Rasekh, M. e Haddadpour, H., Panel flutter analysis of general laminated composite plates,. 2010, Composite Structures 92, pp.2906-2915.

DOI: 10.1016/j.compstruct.2010.05.001

Google Scholar

[30] Storn, R., Price, K. Differential Evolution: A Simple and Efficient Adaptative Schem for Global Optimization over Continuous Spaces,. International Computer Science Institute. 1995, Vols. 12, pgs. 1-16.

Google Scholar

[31] Lobato, F. S., Steffen Jr., Engineering System Design with Multi-objective Differential Evolution,., V. Brasília - DF, Brasil : s. n., 2007. 19th International Congress of Mechanical Engineering - COBEM.

Google Scholar

[32] Wu, S. Y. Method for Multiple Mode Shunt Damping of Structural Vibration using a Single PZT Transducer,. (1998).

Google Scholar

[33] Wu, S. Y. Bicos, A. S. 1997, Structural vibration damping experiments using improved piezoelectric shunts,. In proceedings of SPIE, Smart Structures and Materials: Passive Damping and Isolation, SPIE, Vol. 3045, pp.40-50.

DOI: 10.1117/12.274217

Google Scholar

[34] Meunier, M., Shenoi, R. A. Dynamic Analysis of Composite Sandwich Plates with Damping Modelled using High Order Shear Deformation Theory,. Composite Structures. 54, 2001, Vols. pgs. 243-254.

DOI: 10.1016/s0263-8223(01)00094-0

Google Scholar

[35] Lobato, F. S.,. Otimização Multi-Objetivo para o Projeto de Sistemas de Engenharia,. Tese de Doutorado apresentada no Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Uberlândia : 402f., (2008).

DOI: 10.18605/2175-7275/cereus.v10n2p224-239

Google Scholar

[36] Viana, F. A. C. Surrogate Modeling Techniques and Heuristic Optimization Methods applied to Design and Identification Problems,. 156f. : Tese de Doutorado apresentada no Programa de Pós-graduação em Engenharia Mecânica da Universidade Federal de Uberlândia, (2008).

DOI: 10.36229/978-85-7042-207-1

Google Scholar