[1]
M.H. Akonda, C.A. Lawrence, B.M. Weager, Recycled carbon fibre-reinforced polypropylene thermoplastic composites, Compos Part A-Appl S 43 (2012) 79-86.
DOI: 10.1016/j.compositesa.2011.09.014
Google Scholar
[2]
J.M. Park et al., Optimum dispersion conditions and interfacial modification of carbon fiber and CNT–phenolic composites by atmospheric pressure plasma treatment, Compos Part B-Eng 43 (2012) 2272-2278.
DOI: 10.1016/j.compositesb.2012.01.025
Google Scholar
[3]
H. Yuan, C. Wang, S. Zhang, X. Lin, Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite, Appl Surf Sci 259 (2012) 288-293.
DOI: 10.1016/j.apsusc.2012.10.034
Google Scholar
[4]
T Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase – Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos Part A-Appl S 43 (2012).
DOI: 10.1016/j.compositesa.2012.02.016
Google Scholar
[5]
M. Nardin, E.M. Asloun, J. Schultz, Physico-Chemical Interactions Between Carbon Fibers And Peek. Controlled Interphases In Composites Materials, New York, (1990).
DOI: 10.1007/978-94-011-7816-7_28
Google Scholar
[6]
H. Launay, C.M. Hansen, K. Almdal, Hansen Solubility Parameters For A Carbon Fiber/Epoxy Composite, Carbon 45 (2007) 2859-2865.
DOI: 10.1016/j.carbon.2007.10.011
Google Scholar
[7]
P.E. Vickers, J.F. Watts, C. Perruchot, M.M. Chehimi, The surface chemistry and acid–base properties of a PAN-based carbon fibre, Carbon 38 (2000) 675-689.
DOI: 10.1016/s0008-6223(99)00137-2
Google Scholar
[8]
J. Tsai, C.T. Sun, Dynamic compressive strengths of polymeric composites, Int J Solids Struct 41 (2004) 3211-3224.
DOI: 10.1016/j.ijsolstr.2003.12.010
Google Scholar
[9]
K. Noda, A. Takahara, T. Kajiyama, Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic viscoelastic measurement, Polymer 42 (2001) 5803-5811.
DOI: 10.1016/s0032-3861(00)00897-1
Google Scholar
[10]
R. Brighenti, A mechanical model for fiber reinforced composite materials with elasto-plastic matrix and interface debonding, Comp Mater Sci 29 (2004) 475-93.
DOI: 10.1016/j.commatsci.2003.12.006
Google Scholar
[11]
X.F. Lu, P. Xiao, J. Chen, Y. Long, Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature, Corros Sci 55 (2012) 20-25.
DOI: 10.1016/j.corsci.2011.09.024
Google Scholar
[12]
J.D. Schaefer, M.E. Guzman, C.S. Lim, A.J. Rodriguez, B. Minaie, Influence of functionalized carbon nanofibers on the single carbon fiber–epoxy matrix interface, Compos Part B-Eng 55 (2013) 41–47.
DOI: 10.1016/j.compositesb.2013.05.051
Google Scholar
[13]
J.M. Park, et al., Interfacial and hydrophobic evaluation of glass fiber/CNT–epoxy nanocomposites using electro-micromechanical technique and wettability test, Compos Part A-Appl S 40 (2009) 1722-1731.
DOI: 10.1016/j.compositesa.2009.08.006
Google Scholar
[14]
F. Vautard, S. Ozcan, H. Meyer, Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites, Compos Part A-Appl S 43 (2012) 1120-1133.
DOI: 10.1016/j.compositesa.2012.02.018
Google Scholar
[15]
K.E. Atkinson, C. Kiely, The influence of fibre surface properties on the mode of failure in carbon-fibre/epoxy composites, Compos Sci Technol 58 (1998) 1917-(1922).
DOI: 10.1016/s0266-3538(98)00012-8
Google Scholar
[16]
C. Ageorges, K. Friedrich, L. Ye, Experiments to relate carbon-fibre surface treatments to composite mechanical properties, Compos Sci Technol 59 (1999) 2101-2113.
DOI: 10.1016/s0266-3538(99)00067-6
Google Scholar
[17]
M.A. Montes-Moran, et al., A study of the effect of plasma treatment on the interfacial properties of carbon fibre-thermoplastic composites, Carbon 43 (2005) 1795-1799.
DOI: 10.1016/j.carbon.2005.02.005
Google Scholar
[18]
J.M. Park, et al., Interfacial properties and self-sensing of single carbon fiber reinforced CNT-phenolic nanocomposites using electro-micromechanical and wettability tests, Compos Part B-Eng 43 (2012) 1171-1177.
DOI: 10.1016/j.compositesb.2011.08.035
Google Scholar
[19]
L.B. Nohara, G.P. Filho, E.L. Nohara, M.U. Kleinke, M.C. Rezende, Evaluation of carbon fiber surface treated by chemical and cold plasma processes, Mat Res 8(3) (2005) 281-286.
DOI: 10.1590/s1516-14392005000300010
Google Scholar
[20]
F. Vautard, S. Ozcan, F. Paulauskas, J.E. Spruiell, H. Meyer, M.J. Lance, Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment, Appl Surf Sci 261 (2012) 473- 480.
DOI: 10.1016/j.apsusc.2012.08.038
Google Scholar
[21]
Ishifune, M. et al., Novel electrochemical surface modification method of carbon fiber and its utilization to the preparation of functional electrode, Electrochim Acta. 51 (2005) 14-22.
DOI: 10.1016/j.electacta.2005.04.002
Google Scholar
[22]
K. Ma, B. Wang, P. Chen, X. Zhou, Plasma treatment of carbon fibers: Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites, Appl Surf Sci 257 (2011) 3824-3830.
DOI: 10.1016/j.apsusc.2010.12.074
Google Scholar
[23]
H.C. Wen, et al., Effects of ammonia plasma treatment on the surface characteristics of carbon fibers, Surf Coat Tech 200 (2006) 3166-3169.
Google Scholar
[24]
B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE T Plasma Sci 19(6) (1991) 1063-1077.
DOI: 10.1109/27.125031
Google Scholar
[25]
J. Li, H. Liang, F. He, Y. Huang, Y. Wan, Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites, Surf Coat Tech 203 (2009) 1317-1321.
DOI: 10.1016/j.surfcoat.2008.10.042
Google Scholar
[26]
J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, N.C. Tran, Plasma source ion‐implantation technique for surface modification of materials, J Appl Physics 62 (1987) 4591-4596.
DOI: 10.1063/1.339055
Google Scholar
[27]
Conrad, J. R. Method And Apparatus For Plasma Source Ion Implantation, Us Patent, 4764394, (1988).
Google Scholar
[28]
M. Ueda, et al., Improvements of plasma immersion ion implantation (PIII) and deposition (PIII&D) processing for materials surface modification, Surf Coat Tech 229 (2013) 97-104.
DOI: 10.1016/j.surfcoat.2012.06.057
Google Scholar
[29]
G. Wu, et al., Effects of surface alloying on electrochemical corrosion behavior of oxygen-plasma-modified biomedical magnesium alloy, Surf Coat Tech 206 (2012) 3186-3195.
DOI: 10.1016/j.surfcoat.2012.01.001
Google Scholar
[30]
P.M. Ladeira, et al., A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law, Carbon 80 (2014) 629-639.
DOI: 10.1016/j.carbon.2014.09.006
Google Scholar
[31]
V.M. Irurzun, M.P. Ruiz, D.E. Resasco, A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law, Carbon 48 (2010) 2873-2881.
DOI: 10.1016/j.carbon.2014.09.006
Google Scholar
[32]
N. Melanitis, P.L. Tetlow, C. Galiotis, Characterization of PAN-based carbon fibres with laser Raman spectroscopy, J Mater Sci 31 (1996) 851–860.
DOI: 10.1007/bf00352882
Google Scholar
[33]
D. Akbar, U.E. Güngör, Effects of surface alloying on electrochemical corrosion behavior of oxygen-plasma-modified biomedical magnesium alloy, Surf Coat Tech 240 (2014) 233-242.
Google Scholar
[34]
M. Sharma et al., Carbon fiber surfaces and composite interphases, Compos Sci Technol 102 (2014) 35-50.
Google Scholar
[35]
J. Xie, et al., Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment, Surf Coat Tech (2011) 191-201.
Google Scholar
[36]
Z. Liu, et al., Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites, Appl Surf Sci 283 (2013) 38-45.
DOI: 10.1016/j.apsusc.2013.05.137
Google Scholar
[37]
S. Erden, et al., Continuous Atmospheric Plasma Oxidation of Carbon Fibres: Influence on the Fibre Surface and Bulk Properties and Adhesion to Polyamide 12, Plasma Chem Plasma P 30 (2010) 471-487.
DOI: 10.1007/s11090-010-9227-6
Google Scholar
[38]
A.L. Santos, E.C. Botelho, K.G. Kostov, P.A.P. Nascente, L.L.G. Da Silva, Atmospheric Plasma Treatment of Carbon Fibers for Enhancement of Their Adhesion Properties, IEEE T Plasma Sci 41 (2013) 319-324.
DOI: 10.1109/tps.2012.2234484
Google Scholar
[39]
A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition, first ed, John Wiley And Sons Inc., New York, (2000).
Google Scholar
[40]
C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric Pressure Plasmas: A Review, Spectrochim Acta B 61 (2006) 2-30.
DOI: 10.1016/j.sab.2005.10.003
Google Scholar
[41]
H. Yuan, S. Zhanga, C. Lua, S. He, F. An, Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing, Appl Surf Sci 279 (2013) 279-284.
DOI: 10.1016/j.apsusc.2013.04.085
Google Scholar
[42]
J. Albenojar, R. Torregrosa-Coque, A.M. Martinez, Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma, Surf Coat Tech 203 (2009) 2173-2180.
DOI: 10.1016/j.surfcoat.2009.01.037
Google Scholar
[43]
A. Bismarck, M.E. Kumru, J. Springer, Influence of Oxygen Plasma Treatment of PAN-Based Carbon Fibers on Their Electrokinetic and Wetting Properties, J Colloid Interf Sci 210 (1999) 60-72.
DOI: 10.1006/jcis.1998.5912
Google Scholar
[44]
A. Bismarck, D. Righter, C. Wuertz, M.E. Kumru, B. Song, J. Springer, Adhesion: Comparison Between Physico-chemical Expected and Measured Adhesion of Oxygen-plasma-treated Carbon Fibers and Polycarbonate, J Adhesion 73 (2000) 19-42.
DOI: 10.1080/00218460008029295
Google Scholar
[45]
J.P. Boudou, J.I. Paredes, A. Cuesta, A.M. Alonso, J.M.D. Tascon, Oxygen plasma modification of pitch-based isotropic carbon fibres, Carbon 41 (2003) 41-56.
DOI: 10.1016/s0008-6223(02)00270-1
Google Scholar
[46]
C.R.O. Souto, H.C. Duarte, Química Da Vida, first ed, Edufrn, Natal-Brasil, (2006).
Google Scholar
[47]
Z. Xu, et al., Surface modification of carbon fiber by redox-induced graft polymerization of acrylic acid, J Appl Polym Sci 108 (2008) 1887-1892.
DOI: 10.1002/app.27874
Google Scholar
[48]
Z. Xu, et al., Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy, Eur Polym J 44 (2008) 494-503.
DOI: 10.1016/j.eurpolymj.2007.11.021
Google Scholar
[49]
S. Tiwari, J. Bijwe, S. Panier, Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment, Wear 271 (2011) 2252–2260.
DOI: 10.1016/j.wear.2010.11.052
Google Scholar
[50]
K. Zhang, G. Zhang, B. Liu, X. Wang, S. Long, J. Yang, Effect of aminated polyphenylene sulfide on the mechanical properties of short carbon fiber reinforced polyphenylene sulfide composites, Compos Sci Technol 98 (2014) 57-63.
DOI: 10.1016/j.compscitech.2014.04.020
Google Scholar