Carbon Fiber Surface Modification by Plasma Treatment for Interface Adhesion Improvements of Aerospace Composites

Article Preview

Abstract:

This paper is focused on the processing of thermoplastic composite materials obtained from carbon fibers (CFs) treated by plasma assisted techniques. The treatments employed in this work were the Dielectric Barrier Discharge (DBD), which is done at atmospheric pressure, involving lower energies and the Plasma Immersion Ion Implantation (PIII), which is performed at low pressure, involving higher energies. After the treatments, samples characterizations were performed to determine which treatment is most effective to get better physico-chemical CF surface properties. The techniques employed in this work in order to evaluate the surface treatment were: scanning electron microscopy (SEM); atomic force microscopy (AFM) Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). Treated and untreated CFs/Polyphenylene sulfide (PPS) composites were processed by hot-compression molding technique. These composites were evaluated by interlaminar shear tests (ILSS). After analyzing the results, it was found that the treatments increased the CF roughness and caused slight changes in the CF structure. In addition, there was an increase in the shear strength of the composites obtained from treated fibers by both plasma processes. In conclusion, DBD and PIII treatments are effective tools for improving adhesion between CF and the polymeric matrix.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-87

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.H. Akonda, C.A. Lawrence, B.M. Weager, Recycled carbon fibre-reinforced polypropylene thermoplastic composites, Compos Part A-Appl S 43 (2012) 79-86.

DOI: 10.1016/j.compositesa.2011.09.014

Google Scholar

[2] J.M. Park et al., Optimum dispersion conditions and interfacial modification of carbon fiber and CNT–phenolic composites by atmospheric pressure plasma treatment, Compos Part B-Eng 43 (2012) 2272-2278.

DOI: 10.1016/j.compositesb.2012.01.025

Google Scholar

[3] H. Yuan, C. Wang, S. Zhang, X. Lin, Effect of surface modification on carbon fiber and its reinforced phenolic matrix composite, Appl Surf Sci 259 (2012) 288-293.

DOI: 10.1016/j.apsusc.2012.10.034

Google Scholar

[4] T Kamae, L.T. Drzal, Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase – Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion, Compos Part A-Appl S 43 (2012).

DOI: 10.1016/j.compositesa.2012.02.016

Google Scholar

[5] M. Nardin, E.M. Asloun, J. Schultz, Physico-Chemical Interactions Between Carbon Fibers And Peek. Controlled Interphases In Composites Materials, New York, (1990).

DOI: 10.1007/978-94-011-7816-7_28

Google Scholar

[6] H. Launay, C.M. Hansen, K. Almdal, Hansen Solubility Parameters For A Carbon Fiber/Epoxy Composite, Carbon 45 (2007) 2859-2865.

DOI: 10.1016/j.carbon.2007.10.011

Google Scholar

[7] P.E. Vickers, J.F. Watts, C. Perruchot, M.M. Chehimi, The surface chemistry and acid–base properties of a PAN-based carbon fibre, Carbon 38 (2000) 675-689.

DOI: 10.1016/s0008-6223(99)00137-2

Google Scholar

[8] J. Tsai, C.T. Sun, Dynamic compressive strengths of polymeric composites, Int J Solids Struct 41 (2004) 3211-3224.

DOI: 10.1016/j.ijsolstr.2003.12.010

Google Scholar

[9] K. Noda, A. Takahara, T. Kajiyama, Fatigue failure mechanisms of short glass-fiber reinforced nylon 66 based on nonlinear dynamic viscoelastic measurement, Polymer 42 (2001) 5803-5811.

DOI: 10.1016/s0032-3861(00)00897-1

Google Scholar

[10] R. Brighenti, A mechanical model for fiber reinforced composite materials with elasto-plastic matrix and interface debonding, Comp Mater Sci 29 (2004) 475-93.

DOI: 10.1016/j.commatsci.2003.12.006

Google Scholar

[11] X.F. Lu, P. Xiao, J. Chen, Y. Long, Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature, Corros Sci 55 (2012) 20-25.

DOI: 10.1016/j.corsci.2011.09.024

Google Scholar

[12] J.D. Schaefer, M.E. Guzman, C.S. Lim, A.J. Rodriguez, B. Minaie, Influence of functionalized carbon nanofibers on the single carbon fiber–epoxy matrix interface, Compos Part B-Eng 55 (2013) 41–47.

DOI: 10.1016/j.compositesb.2013.05.051

Google Scholar

[13] J.M. Park, et al., Interfacial and hydrophobic evaluation of glass fiber/CNT–epoxy nanocomposites using electro-micromechanical technique and wettability test, Compos Part A-Appl S 40 (2009) 1722-1731.

DOI: 10.1016/j.compositesa.2009.08.006

Google Scholar

[14] F. Vautard, S. Ozcan, H. Meyer, Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites, Compos Part A-Appl S 43 (2012) 1120-1133.

DOI: 10.1016/j.compositesa.2012.02.018

Google Scholar

[15] K.E. Atkinson, C. Kiely, The influence of fibre surface properties on the mode of failure in carbon-fibre/epoxy composites, Compos Sci Technol 58 (1998) 1917-(1922).

DOI: 10.1016/s0266-3538(98)00012-8

Google Scholar

[16] C. Ageorges, K. Friedrich, L. Ye, Experiments to relate carbon-fibre surface treatments to composite mechanical properties, Compos Sci Technol 59 (1999) 2101-2113.

DOI: 10.1016/s0266-3538(99)00067-6

Google Scholar

[17] M.A. Montes-Moran, et al., A study of the effect of plasma treatment on the interfacial properties of carbon fibre-thermoplastic composites, Carbon 43 (2005) 1795-1799.

DOI: 10.1016/j.carbon.2005.02.005

Google Scholar

[18] J.M. Park, et al., Interfacial properties and self-sensing of single carbon fiber reinforced CNT-phenolic nanocomposites using electro-micromechanical and wettability tests, Compos Part B-Eng 43 (2012) 1171-1177.

DOI: 10.1016/j.compositesb.2011.08.035

Google Scholar

[19] L.B. Nohara, G.P. Filho, E.L. Nohara, M.U. Kleinke, M.C. Rezende, Evaluation of carbon fiber surface treated by chemical and cold plasma processes, Mat Res 8(3) (2005) 281-286.

DOI: 10.1590/s1516-14392005000300010

Google Scholar

[20] F. Vautard, S. Ozcan, F. Paulauskas, J.E. Spruiell, H. Meyer, M.J. Lance, Influence of the carbon fiber surface microstructure on the surface chemistry generated by a thermo-chemical surface treatment, Appl Surf Sci 261 (2012) 473- 480.

DOI: 10.1016/j.apsusc.2012.08.038

Google Scholar

[21] Ishifune, M. et al., Novel electrochemical surface modification method of carbon fiber and its utilization to the preparation of functional electrode, Electrochim Acta. 51 (2005) 14-22.

DOI: 10.1016/j.electacta.2005.04.002

Google Scholar

[22] K. Ma, B. Wang, P. Chen, X. Zhou, Plasma treatment of carbon fibers: Non-equilibrium dynamic adsorption and its effect on the mechanical properties of RTM fabricated composites, Appl Surf Sci 257 (2011) 3824-3830.

DOI: 10.1016/j.apsusc.2010.12.074

Google Scholar

[23] H.C. Wen, et al., Effects of ammonia plasma treatment on the surface characteristics of carbon fibers, Surf Coat Tech 200 (2006) 3166-3169.

Google Scholar

[24] B. Eliasson, U. Kogelschatz, Nonequilibrium volume plasma chemical processing, IEEE T Plasma Sci 19(6) (1991) 1063-1077.

DOI: 10.1109/27.125031

Google Scholar

[25] J. Li, H. Liang, F. He, Y. Huang, Y. Wan, Air dielectric barrier discharges plasma surface treatment of three-dimensional braided carbon fiber reinforced epoxy composites, Surf Coat Tech 203 (2009) 1317-1321.

DOI: 10.1016/j.surfcoat.2008.10.042

Google Scholar

[26] J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, N.C. Tran, Plasma source ion‐implantation technique for surface modification of materials, J Appl Physics 62 (1987) 4591-4596.

DOI: 10.1063/1.339055

Google Scholar

[27] Conrad, J. R. Method And Apparatus For Plasma Source Ion Implantation, Us Patent, 4764394, (1988).

Google Scholar

[28] M. Ueda, et al., Improvements of plasma immersion ion implantation (PIII) and deposition (PIII&D) processing for materials surface modification, Surf Coat Tech 229 (2013) 97-104.

DOI: 10.1016/j.surfcoat.2012.06.057

Google Scholar

[29] G. Wu, et al., Effects of surface alloying on electrochemical corrosion behavior of oxygen-plasma-modified biomedical magnesium alloy, Surf Coat Tech 206 (2012) 3186-3195.

DOI: 10.1016/j.surfcoat.2012.01.001

Google Scholar

[30] P.M. Ladeira, et al., A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law, Carbon 80 (2014) 629-639.

DOI: 10.1016/j.carbon.2014.09.006

Google Scholar

[31] V.M. Irurzun, M.P. Ruiz, D.E. Resasco, A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law, Carbon 48 (2010) 2873-2881.

DOI: 10.1016/j.carbon.2014.09.006

Google Scholar

[32] N. Melanitis, P.L. Tetlow, C. Galiotis, Characterization of PAN-based carbon fibres with laser Raman spectroscopy, J Mater Sci 31 (1996) 851–860.

DOI: 10.1007/bf00352882

Google Scholar

[33] D. Akbar, U.E. Güngör, Effects of surface alloying on electrochemical corrosion behavior of oxygen-plasma-modified biomedical magnesium alloy, Surf Coat Tech 240 (2014) 233-242.

Google Scholar

[34] M. Sharma et al., Carbon fiber surfaces and composite interphases, Compos Sci Technol 102 (2014) 35-50.

Google Scholar

[35] J. Xie, et al., Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment, Surf Coat Tech (2011) 191-201.

Google Scholar

[36] Z. Liu, et al., Effects of surface modification by atmospheric oxygen dielectric barrier discharge plasma on PBO fibers and its composites, Appl Surf Sci 283 (2013) 38-45.

DOI: 10.1016/j.apsusc.2013.05.137

Google Scholar

[37] S. Erden, et al., Continuous Atmospheric Plasma Oxidation of Carbon Fibres: Influence on the Fibre Surface and Bulk Properties and Adhesion to Polyamide 12, Plasma Chem Plasma P 30 (2010) 471-487.

DOI: 10.1007/s11090-010-9227-6

Google Scholar

[38] A.L. Santos, E.C. Botelho, K.G. Kostov, P.A.P. Nascente, L.L.G. Da Silva, Atmospheric Plasma Treatment of Carbon Fibers for Enhancement of Their Adhesion Properties, IEEE T Plasma Sci 41 (2013) 319-324.

DOI: 10.1109/tps.2012.2234484

Google Scholar

[39] A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition, first ed, John Wiley And Sons Inc., New York, (2000).

Google Scholar

[40] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric Pressure Plasmas: A Review, Spectrochim Acta B 61 (2006) 2-30.

DOI: 10.1016/j.sab.2005.10.003

Google Scholar

[41] H. Yuan, S. Zhanga, C. Lua, S. He, F. An, Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing, Appl Surf Sci 279 (2013) 279-284.

DOI: 10.1016/j.apsusc.2013.04.085

Google Scholar

[42] J. Albenojar, R. Torregrosa-Coque, A.M. Martinez, Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma, Surf Coat Tech 203 (2009) 2173-2180.

DOI: 10.1016/j.surfcoat.2009.01.037

Google Scholar

[43] A. Bismarck, M.E. Kumru, J. Springer, Influence of Oxygen Plasma Treatment of PAN-Based Carbon Fibers on Their Electrokinetic and Wetting Properties, J Colloid Interf Sci 210 (1999) 60-72.

DOI: 10.1006/jcis.1998.5912

Google Scholar

[44] A. Bismarck, D. Righter, C. Wuertz, M.E. Kumru, B. Song, J. Springer, Adhesion: Comparison Between Physico-chemical Expected and Measured Adhesion of Oxygen-plasma-treated Carbon Fibers and Polycarbonate, J Adhesion 73 (2000) 19-42.

DOI: 10.1080/00218460008029295

Google Scholar

[45] J.P. Boudou, J.I. Paredes, A. Cuesta, A.M. Alonso, J.M.D. Tascon, Oxygen plasma modification of pitch-based isotropic carbon fibres, Carbon 41 (2003) 41-56.

DOI: 10.1016/s0008-6223(02)00270-1

Google Scholar

[46] C.R.O. Souto, H.C. Duarte, Química Da Vida, first ed, Edufrn, Natal-Brasil, (2006).

Google Scholar

[47] Z. Xu, et al., Surface modification of carbon fiber by redox-induced graft polymerization of acrylic acid, J Appl Polym Sci 108 (2008) 1887-1892.

DOI: 10.1002/app.27874

Google Scholar

[48] Z. Xu, et al., Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy, Eur Polym J 44 (2008) 494-503.

DOI: 10.1016/j.eurpolymj.2007.11.021

Google Scholar

[49] S. Tiwari, J. Bijwe, S. Panier, Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment, Wear 271 (2011) 2252–2260.

DOI: 10.1016/j.wear.2010.11.052

Google Scholar

[50] K. Zhang, G. Zhang, B. Liu, X. Wang, S. Long, J. Yang, Effect of aminated polyphenylene sulfide on the mechanical properties of short carbon fiber reinforced polyphenylene sulfide composites, Compos Sci Technol 98 (2014) 57-63.

DOI: 10.1016/j.compscitech.2014.04.020

Google Scholar