Structural Behavior of Composite Laminates Subjected to Interlaminar Damage Induced by Thermal Fatigue

Article Preview

Abstract:

An experimental and numerical study on interlaminar thermal fatigue induced delamination in unidirectional carbon fiber reinforced laminate is presented in this work. The studied material consists of a unidirectional prepreg carbon fiber/epoxy (AS4/8552), which has the anti-symmetrical [902/02]T X-ply lay-up. A Teflon® film insert was introduced into the material between the third and fourth outer layers to simulate pre-existing crack. The samples were tested under thermal cycle condition within a temperature range of 130°C and -70°C. The curvature variation with the number of cycles was measured during the tests and presented along with the crack growth rate or delamination rate (da/dN) as a function of energy release rate amplitude (), which is the arithmetic difference between GH and GL that occur at lowest and highest temperatures respectively. The experimental results were compared with numerical results obtained using ABAQUS Finite Element code. A good correlation in terms of crack growth rate (da/dN) as a function of the energy release rate range () was obtained between experimental and numerical results. Furthermore, the results show that the experimental curvature decrease with increasing number of cycles, and its behavior varies with the range of thermal load imposed on the specimen.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-34

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Al-Khudairi, O., 2015. Characterising mode I/mode II fatigue delamination growth in unidirectional fibre reinforced polymer laminates,. Materials and Design, Vol. 66, pp.93-102.

DOI: 10.1016/j.matdes.2014.10.038

Google Scholar

[2] Coronado, P. et al., 2014, Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon-fiber/epoxy composites under fatigue loading,. Composite Structures, Vol. 112, pp.188-193.

DOI: 10.1016/j.compstruct.2014.02.007

Google Scholar

[3] Gibson, R.F. Principles of Composite Material Mechanics. Singapore: McGraw-Hill Book Co, (1994).

Google Scholar

[4] Ramanujam, N., Vaddadi, P., Nakamura, T., Singh, R.P., 2008. Interlaminar fatigue crack growth of cross-ply composites under thermal cycles,. Composite Structures, Vol. 85, pp.175-187.

DOI: 10.1016/j.compstruct.2007.10.018

Google Scholar

[5] Turon, A. et al., 2007. Simulaton of delamination in composites under high-cycle fatigue,. Composites: Part A, Vol. 38, pp.2270-2282.

DOI: 10.1016/j.compositesa.2006.11.009

Google Scholar

[6] Figiel, L., Kaminski, M., 2003, Mechanical and thermal fatigue delamination of curved layered composites,. Computers and Structures, Vol. 81, pp.1865-1873.

DOI: 10.1016/s0045-7949(03)00207-4

Google Scholar

[7] Sjögren, A.; Asp, L.E., 2002. Effects of temperature on delamination growth in a carbon/epoxy composite under fatigue loading,. InternationalJournalof Fatigue, Vol. 24, pp.179-184.

DOI: 10.1016/s0142-1123(01)00071-8

Google Scholar

[8] Shokrieh, M.M., Kamali, S.M., 2005. Theoretical and experimental studies on residual stresses in laminated polymer composites,. JournalofCompositeMaterials, Vol. 39, pp.2213-2225.

DOI: 10.1177/0021998305053511

Google Scholar

[9] Palerosi, A. C. Avaliação do comportamento termomecânico de laminados em material compósito por processamento digital de imagens. DoctoralThesis, ITA, São José dos Campos (2006).

DOI: 10.5016/dt000623501

Google Scholar

[10] Cowley, K. D., Beaumont, P.W.R., 1997. The measurement and prediction of residual stresses in carbon-fiber/polymer composites,. Comp. Sci. and Technol., Vol. 57, pp.1445-1455.

DOI: 10.1016/s0266-3538(97)00048-1

Google Scholar

[11] ABAQUS. Analysis User's Manual: Versão 6. 10-1. Providence: ABAQUS, (2010).

Google Scholar

[12] Hahn, H. T., 1976. Residual stresses in polymer matrix composite laminates,. Journal of Composite Materials, Vol. 10, pp.266-278.

DOI: 10.1177/002199837601000401

Google Scholar

[13] Daniel I.M., Ishai O. Engineering mechanics of composite materials. 2nded. New York: Oxford University Press; (2006).

Google Scholar

[14] Shindo, Y., Inamoto, A., Narita, F.H., Horiguchi, K., 2006. Mode I fatigue delamination growth in GFRP woven laminates at low temperatures,. Engineering Fracture Mechanics, Vol. 73, p.2080-(2090).

DOI: 10.1016/j.engfracmech.2006.03.015

Google Scholar

[15] Coronado, P., Argüelles, A., Viña, J., Viña, I., 2014. Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon-fiber/epoxy composites under fatigue loading,. Composite Structures, Vol. 112, pp.188-193.

DOI: 10.1016/j.compstruct.2014.02.007

Google Scholar

[16] Yao, L., Alderliesten, R. C.; Zhao, M.; Benedictus, R., 2014. Discussion on the use of the strain energy release rate for fatigue delamination characterization,. Composites: Part A, Vol. 66, pp.65-72.

DOI: 10.1016/j.compositesa.2014.06.018

Google Scholar

[17] Rans, C., Alderliesten, R., Benedictus, R., 2011. Misinterpreting the results: How similitude can improve our understanding of fatigue delamination growth,. Comp. Sci. and Technol., Vol. 71, p.230–238.

DOI: 10.1016/j.compscitech.2010.11.010

Google Scholar

[18] Yokozeki, T.; Aoki, T.; Ishikawa, T., 2002. Fatigue growth of matrix cracks in the transverse direction of CFRP laminates,. Comp, Sci, and Technol., Vol. 62, pp.1223-1229.

DOI: 10.1016/s0266-3538(02)00068-4

Google Scholar

[19] Endo, B.L.R.D., Caracterização da tenacidade à fratura interlaminar de um material compósito de fibra de carbono-epoxi considerando influência termomecânica. Master Dissertation, ITA, São José dos Campos (2014).

Google Scholar

[20] Hexcel Composites. Hexply 8552 epoxy matriz (180 oC /356 oF curing matrix): product data. Publication FTA 072e, 2013. Available in: May 21th , (2014).

Google Scholar

[21] Matthews, C., 2001. Aeronautical engineer's data book. Massachusetts: Butterworth-Heinemann Title; (2001).

Google Scholar

[22] Jones, R. M. Mechanics of Composite Materials. 2nded. Philadelphia: Taylor and Francis; (1999).

Google Scholar

[23] Nairn, J. A. Matrix microcracking. In: Talreja R., editor. Damage mechanics of composite material (1999). Elsevier Science.

Google Scholar

[24] ASTM D 5528 – 01. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. West Conshohocken, (2007).

DOI: 10.1520/d5528-01r07e01

Google Scholar

[25] Martin, R. H., Davidson B., Mode II fracture toughness evaluation using a four point bend end notched flexure test,. Proceeding of the 4th International Deformation and Fracture of Composite Conference, London UK, pp.243-252.

DOI: 10.1179/146580199101540565

Google Scholar