Influence of Temperature on Interlaminar Fracture Toughness of a Carbon Fiber-Epoxy Composite Material

Abstract:

Article Preview

Composite materials have been increasingly used in the aerospace industry for the manufacturing of structures, because of the associated properties of low weight and high mechanical resistance. On the other hand, they have low delamination resistance. This paper presents the results of an experimental study performed to obtain the values of interlaminar fracture toughness (G) of a laminate under three different temperatures, using 0º carbon-epoxy prepreg fabric plies and manufactured via Hand lay up cured in autoclave (HLUP). Double Cantilever Beam (DCB) tests were performed to evaluate mode I toughness, Four Point Bend End Notched Flexure (4ENF) for mode II and Mixed Mode Bending (MMB) for mixed mode I / mode II at -54°C, 25°C and 80°C. The data were collected and analyzed using a routine developed in Matlab®. Finally, the relation between GI and GII through the failure envelope and the temperature influence on the interlaminar fracture toughness was assessed.

Info:

Periodical:

Edited by:

Prof. José Divo Bressan, Prof. Maurício Vicente Donadon

Pages:

35-51

Citation:

R. de Cássia Mendonça Sales et al., "Influence of Temperature on Interlaminar Fracture Toughness of a Carbon Fiber-Epoxy Composite Material", Advanced Materials Research, Vol. 1135, pp. 35-51, 2016

Online since:

January 2016

Export:

Price:

$41.00

[1] A. T. Nettles and E. J. Biss, Low Temperature Mechanical Testingof Carbon-Fiber/Epoxy-Resin Composite Materials, NASA Technical Paper 3663, U.S. Government Printing Office, 1996, pp.1-23.

[2] ASTM D5528-01. Standard test method for mode I interlaminar fracturetoughness of unidirectional fiber-reinforced polymer matrix composites; (2007).

DOI: https://doi.org/10.1520/d6671-01

[3] M.A. Arbelo, M.V. Donadon, S.F.M. Almeida, Análise numérica de laminados de materiais compósitos sujeitos a delaminação em modo misto I-II, In: Congresso Nacional de Engenharia Mecânica, ABCM, Campina Grande, Brazil (2010).

DOI: https://doi.org/10.1016/j.ctmat.2013.12.001

[4] R.C.M. SALES, C.N. GIMENES, F GUIMARÃES, J.M.F. MARLET, M.V. DONADON, MIXED MODE I + II INTERLAMINAR FRACTURE TOUGHNESS OF REINFORCED CARBON FIBER LAMINATES MANUFACTURED BY VARTM AND HLUP: A COMPARATIVE STUDY, 2ND BRAZILIAN CONFERENCE ON COMPOSITE MATERIALS – BCCM2, SEPTEMBER 15-18, SÃO JOSÉ DOS CAMPOS-SP, BRAZIL (2014).

[5] Y. -X. He, Q. Li, T. Kuila, N. H. Kim, T. Jiang, K. -t. Lau, J. H. Lee, Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications, Comp.: Part B. 44 (2013) 533–539.

DOI: https://doi.org/10.1016/j.compositesb.2012.03.014

[6] W. Dong, H. -C. Liu, S. -J. Park, F. -L. Jin, Fracture toughness improvement of epoxy resins with short carbon fibers, J. of Ind. and Eng. Chem. 20 (2014) 1220–1222.

[7] G. -Y. Heo, M. -K. Seo, S. -Y. Oh, K. -E. Choi and S. -J. Park, Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites, Carbon Letters. 12 (1) (2011) 53-56.

DOI: https://doi.org/10.5714/cl.2011.12.1.053

[8] M. Barikani1, H. Saidpour, M. Sezen, Mode-I Interlaminar Fracture Toughness in Unidirectional Carbon-fibre/Epoxy Composites, Iranian Polym J., 11 (6)(2002), 413-423.

[9] T.A. Sebaey, N. Blanco, J. Costa, C.S. Lopes, Characterization of crack propagation in mode I delamination of multidirectional CFRP laminates, Comp. Sc. and Techn. 72 (2012) 1251–1256.

DOI: https://doi.org/10.1016/j.compscitech.2012.04.011

[10] P. Hansen and R. Martin, DCB, 4ENF and MMB Delamination Characterisation of S2/8552 and IM7/8552, Final Technical Report, United States Army, European Research Office of the US Army, London (1999).

[11] P. Coronado, A. Argüelles, J. Viña, V. Mollón, I. Viña, Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination. Intern. J. of Solids and Struc. 49 (2012) 2934-2940.

DOI: https://doi.org/10.1016/j.ijsolstr.2012.05.018

[12] A. Argüelles, J. Viña, A. Fernández-Canteli, I. Viña, J. Bonhomme, Influence of the matrix constituent on mode I and mode II delamination toughness in fiber-reinforced polymer composites under cyclic fatigue, Mechan. of Mater. 43 (2011) 62–67.

DOI: https://doi.org/10.1016/j.mechmat.2010.10.001

[13] P. Coronado, A. Argüelles, J. Viña, I. Viña, Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon-fibre/epoxy composites under fatigue loading. Comp. Struct. 112 (2014) 188–193.

DOI: https://doi.org/10.1016/j.compstruct.2014.02.007

[14] A. Argüelles, J. Viña, A.F. Canteli, P. Coronado, V. Mollón, Influence of temperature on the delamination process under mode I fracture and dynamic loading of two carbon–epoxy composites Comp.: Part B 68 (2015) 207-214.

DOI: https://doi.org/10.1016/j.compositesb.2014.08.051

[15] ASTM D6671-01. Standard method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites; (2006).

DOI: https://doi.org/10.1520/d6671-01

[16] R.H. Martin, T. Elms, S. Bowron, Characterization of mode II delamination using the 4ENF. In: Proceedings of the 4th European Conference on Composites Testing &Standardization. Institute of Materials, London (1997).

[17] H. Saidpour, M. Barikani, M. Sezen, Mode-II interlaminar fracture toughness of carbon/epoxy laminates. Iranian Polym. J., 12(5) (2003) 389-400.