[1]
A. T. Nettles and E. J. Biss, Low Temperature Mechanical Testingof Carbon-Fiber/Epoxy-Resin Composite Materials, NASA Technical Paper 3663, U.S. Government Printing Office, 1996, pp.1-23.
Google Scholar
[2]
ASTM D5528-01. Standard test method for mode I interlaminar fracturetoughness of unidirectional fiber-reinforced polymer matrix composites; (2007).
DOI: 10.1520/d5528
Google Scholar
[3]
M.A. Arbelo, M.V. Donadon, S.F.M. Almeida, Análise numérica de laminados de materiais compósitos sujeitos a delaminação em modo misto I-II, In: Congresso Nacional de Engenharia Mecânica, ABCM, Campina Grande, Brazil (2010).
DOI: 10.1016/j.ctmat.2013.12.001
Google Scholar
[4]
R.C.M. SALES, C.N. GIMENES, F GUIMARÃES, J.M.F. MARLET, M.V. DONADON, MIXED MODE I + II INTERLAMINAR FRACTURE TOUGHNESS OF REINFORCED CARBON FIBER LAMINATES MANUFACTURED BY VARTM AND HLUP: A COMPARATIVE STUDY, 2ND BRAZILIAN CONFERENCE ON COMPOSITE MATERIALS – BCCM2, SEPTEMBER 15-18, SÃO JOSÉ DOS CAMPOS-SP, BRAZIL (2014).
DOI: 10.1002/pc.24810
Google Scholar
[5]
Y. -X. He, Q. Li, T. Kuila, N. H. Kim, T. Jiang, K. -t. Lau, J. H. Lee, Micro-crack behavior of carbon fiber reinforced thermoplastic modified epoxy composites for cryogenic applications, Comp.: Part B. 44 (2013) 533–539.
DOI: 10.1016/j.compositesb.2012.03.014
Google Scholar
[6]
W. Dong, H. -C. Liu, S. -J. Park, F. -L. Jin, Fracture toughness improvement of epoxy resins with short carbon fibers, J. of Ind. and Eng. Chem. 20 (2014) 1220–1222.
DOI: 10.1016/j.jiec.2013.06.053
Google Scholar
[7]
G. -Y. Heo, M. -K. Seo, S. -Y. Oh, K. -E. Choi and S. -J. Park, Thermal Insulation Properties of Epoxy/Mesoporous Carbon Composites, Carbon Letters. 12 (1) (2011) 53-56.
DOI: 10.5714/cl.2011.12.1.053
Google Scholar
[8]
M. Barikani1, H. Saidpour, M. Sezen, Mode-I Interlaminar Fracture Toughness in Unidirectional Carbon-fibre/Epoxy Composites, Iranian Polym J., 11 (6)(2002), 413-423.
Google Scholar
[9]
T.A. Sebaey, N. Blanco, J. Costa, C.S. Lopes, Characterization of crack propagation in mode I delamination of multidirectional CFRP laminates, Comp. Sc. and Techn. 72 (2012) 1251–1256.
DOI: 10.1016/j.compscitech.2012.04.011
Google Scholar
[10]
P. Hansen and R. Martin, DCB, 4ENF and MMB Delamination Characterisation of S2/8552 and IM7/8552, Final Technical Report, United States Army, European Research Office of the US Army, London (1999).
Google Scholar
[11]
P. Coronado, A. Argüelles, J. Viña, V. Mollón, I. Viña, Influence of temperature on a carbon-fibre epoxy composite subjected to static and fatigue loading under mode-I delamination. Intern. J. of Solids and Struc. 49 (2012) 2934-2940.
DOI: 10.1016/j.ijsolstr.2012.05.018
Google Scholar
[12]
A. Argüelles, J. Viña, A. Fernández-Canteli, I. Viña, J. Bonhomme, Influence of the matrix constituent on mode I and mode II delamination toughness in fiber-reinforced polymer composites under cyclic fatigue, Mechan. of Mater. 43 (2011) 62–67.
DOI: 10.1016/j.mechmat.2010.10.001
Google Scholar
[13]
P. Coronado, A. Argüelles, J. Viña, I. Viña, Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon-fibre/epoxy composites under fatigue loading. Comp. Struct. 112 (2014) 188–193.
DOI: 10.1016/j.compstruct.2014.02.007
Google Scholar
[14]
A. Argüelles, J. Viña, A.F. Canteli, P. Coronado, V. Mollón, Influence of temperature on the delamination process under mode I fracture and dynamic loading of two carbon–epoxy composites Comp.: Part B 68 (2015) 207-214.
DOI: 10.1016/j.compositesb.2014.08.051
Google Scholar
[15]
ASTM D6671-01. Standard method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites; (2006).
DOI: 10.1520/d6671_d6671m-06
Google Scholar
[16]
R.H. Martin, T. Elms, S. Bowron, Characterization of mode II delamination using the 4ENF. In: Proceedings of the 4th European Conference on Composites Testing &Standardization. Institute of Materials, London (1997).
Google Scholar
[17]
H. Saidpour, M. Barikani, M. Sezen, Mode-II interlaminar fracture toughness of carbon/epoxy laminates. Iranian Polym. J., 12(5) (2003) 389-400.
Google Scholar