Controlled Fabrication of Micro/Nano-Structures on Germanium Using Ultrashort Laser Pulses under Ambient Conditions

Article Preview

Abstract:

A technique for ordered fabrication of periodic freestanding micro/nanostructures on the crystalline germanium (Ge) <100> surfaces with 1064 nm wavelength ultrashort laser pulses under ambient conditions is presented. The laser radiation fluence used for obtaining the structures is close to the melting threshold (0.1 J/cm2) of Ge. The dimensions of structures range from hundreds of nanometres to a few microns. The orientation of the periodic surface structures depends on laser beam polarization direction. Arrays of structures are formed in rows parallel to the sample movement direction for samples machined with s-polarized laser pulses, but formed in the direction perpendicular to the movement for p-polarized pulses. The structures are fabricated under variable temperatures on sample surface owing to the changed interference between incident and reflected laser beams. A micro-Raman analysis of the processed surfaces shows a minor change in the spectral intensity as compared to the unprocessed surface and the material retains its crystallinity after laser irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

440-445

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Bauerle, Laser Processing and Chemistry. 4th ed, New York: Springer, (2011).

Google Scholar

[2] M. Sivakumar, K. Venkatakrishnan and B. Tan, Synthesis of nanoscale tips using femtosecond laser radiation under ambient condition. Nanoscale Research Letters, 5(2) (2010) 438-441.

DOI: 10.1007/s11671-009-9502-8

Google Scholar

[3] A.S. Mahmood, M. Sivakumar, K. Venkatakrishnan and Bo Tan, Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation. Applied Physics Letters, 95(3) (2009) 034107.

DOI: 10.1063/1.3168499

Google Scholar

[4] Y. Li, V.A. Stoica, L. Endicott, G. Wang, H. Sun, K.P. Pipe, C. Uher and R. Clarke, Femtosecond laser-induced nanostructure formation in Sb2Te3. Applied Physics Letters, 99(12) (2011) 121903.

DOI: 10.1063/1.3634014

Google Scholar

[5] C. Reinhardt, S. Passinger, B.N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, R. Pollard and A.V. Zayats, Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing. Applied Physics Letters, 89(23) (2006).

DOI: 10.1063/1.2398904

Google Scholar

[6] M.A. Seo, D.S. Kim, H.S. Kim and S.C. Jeoung, Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser. Optics Express, 14(8) (2006) 3694-3699.

DOI: 10.1364/oe.14.003694

Google Scholar

[7] T. -H. Her, R.J. Finlay, C. Wu, S. Deliwala and E. Mazur, Microstructuring of silicon with femtosecond laser pulses. Applied Physics Letters, 73(12) (1998) 1673-1675.

DOI: 10.1063/1.122241

Google Scholar

[8] G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji and J. Fujita, Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Optics Express, 20(14) (2012) 14848-14856.

DOI: 10.1364/oe.20.014848

Google Scholar

[9] Hisashi, S., et al., Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces. Applied Physics Express, 2013. 6(11): p.112701.

DOI: 10.7567/apex.6.112701

Google Scholar

[10] J.F. Young, J.S. Preston, J.E. Sipe and H M. van Driel, Time-resolved evolution of laser-induced periodic surface-structure on germanium. Physical Review B, 27(2) (1983) 1424-1427.

DOI: 10.1103/physrevb.27.1424

Google Scholar

[11] Agassi, D., Phenomenological model for pisosecond-pulse laser annealing of semiconductors. Journal of Applied Physics, 55(12) (1984) 4376-4383.

DOI: 10.1063/1.333007

Google Scholar

[12] M. Straub, M. Afshar, D. Feili, H. Seidel and K. König, Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon. Journal of Applied Physics, 111(12) (2012) 124315.

DOI: 10.1063/1.4730381

Google Scholar

[13] A. Medvid, P. Onufrijevs and A. Mychko, Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons. Nanoscale Research Letters, 6(1) (2011) 582.

DOI: 10.1186/1556-276x-6-582

Google Scholar

[14] R. Ganeev, Formation of different periodic nanostructures on semiconductors. Optics and Spectroscopy, 106(1) (2009) 142-146.

DOI: 10.1134/s0030400x09010196

Google Scholar

[15] S. Horita, Y. Nakata and A. Shimoyama, Alignment of grain boundary in a Si film crystallized by a linearly polarized laser beam on a glass substrate. Applied Physics Letters, 78(15) (2001) 2250-2252.

DOI: 10.1063/1.1362336

Google Scholar

[16] A. Shih, C. -Y. Meng, S. -C. Lee and Ming-Yau Chern, Mechanism for pillar-shaped surface morphology of polysilicon prepared by excimer laser annealing. Journal of Applied Physics, 88(6) (2000) 3725-3733.

DOI: 10.1063/1.1288784

Google Scholar

[17] K. Nishioka and S. Horita, Periodic arrays of submicron Si and Ni dots on SiO2 fabricated using linearly polarized Nd: YAG pulsed laser. Applied Physics A, 91(2) (2008) 235-240.

DOI: 10.1007/s00339-008-4401-x

Google Scholar

[18] J.F. Young, J.S. Preston, H.M. van Driel and J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Physical Review B, 27(2) (1983) 1155-1172.

DOI: 10.1103/physrevb.27.1155

Google Scholar

[19] H.M. Vandriel, J.E. Sipe and J.F. Young, Laser-induced coherent modulation of solid and liquid surfaces. Journal of Luminescence, 30(1-4) (1985) 446-471.

DOI: 10.1016/0022-2313(85)90071-7

Google Scholar

[20] J. Bonse, A. Rosenfeld and J. Kruger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. Journal of Applied Physics, 106(10) (2009).

DOI: 10.1063/1.3261734

Google Scholar