[1]
D. Bauerle, Laser Processing and Chemistry. 4th ed, New York: Springer, (2011).
Google Scholar
[2]
M. Sivakumar, K. Venkatakrishnan and B. Tan, Synthesis of nanoscale tips using femtosecond laser radiation under ambient condition. Nanoscale Research Letters, 5(2) (2010) 438-441.
DOI: 10.1007/s11671-009-9502-8
Google Scholar
[3]
A.S. Mahmood, M. Sivakumar, K. Venkatakrishnan and Bo Tan, Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation. Applied Physics Letters, 95(3) (2009) 034107.
DOI: 10.1063/1.3168499
Google Scholar
[4]
Y. Li, V.A. Stoica, L. Endicott, G. Wang, H. Sun, K.P. Pipe, C. Uher and R. Clarke, Femtosecond laser-induced nanostructure formation in Sb2Te3. Applied Physics Letters, 99(12) (2011) 121903.
DOI: 10.1063/1.3634014
Google Scholar
[5]
C. Reinhardt, S. Passinger, B.N. Chichkov, W. Dickson, G. A. Wurtz, P. Evans, R. Pollard and A.V. Zayats, Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing. Applied Physics Letters, 89(23) (2006).
DOI: 10.1063/1.2398904
Google Scholar
[6]
M.A. Seo, D.S. Kim, H.S. Kim and S.C. Jeoung, Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser. Optics Express, 14(8) (2006) 3694-3699.
DOI: 10.1364/oe.14.003694
Google Scholar
[7]
T. -H. Her, R.J. Finlay, C. Wu, S. Deliwala and E. Mazur, Microstructuring of silicon with femtosecond laser pulses. Applied Physics Letters, 73(12) (1998) 1673-1675.
DOI: 10.1063/1.122241
Google Scholar
[8]
G. Miyaji, K. Miyazaki, K. Zhang, T. Yoshifuji and J. Fujita, Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Optics Express, 20(14) (2012) 14848-14856.
DOI: 10.1364/oe.20.014848
Google Scholar
[9]
Hisashi, S., et al., Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces. Applied Physics Express, 2013. 6(11): p.112701.
DOI: 10.7567/apex.6.112701
Google Scholar
[10]
J.F. Young, J.S. Preston, J.E. Sipe and H M. van Driel, Time-resolved evolution of laser-induced periodic surface-structure on germanium. Physical Review B, 27(2) (1983) 1424-1427.
DOI: 10.1103/physrevb.27.1424
Google Scholar
[11]
Agassi, D., Phenomenological model for pisosecond-pulse laser annealing of semiconductors. Journal of Applied Physics, 55(12) (1984) 4376-4383.
DOI: 10.1063/1.333007
Google Scholar
[12]
M. Straub, M. Afshar, D. Feili, H. Seidel and K. König, Surface plasmon polariton model of high-spatial frequency laser-induced periodic surface structure generation in silicon. Journal of Applied Physics, 111(12) (2012) 124315.
DOI: 10.1063/1.4730381
Google Scholar
[13]
A. Medvid, P. Onufrijevs and A. Mychko, Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons. Nanoscale Research Letters, 6(1) (2011) 582.
DOI: 10.1186/1556-276x-6-582
Google Scholar
[14]
R. Ganeev, Formation of different periodic nanostructures on semiconductors. Optics and Spectroscopy, 106(1) (2009) 142-146.
DOI: 10.1134/s0030400x09010196
Google Scholar
[15]
S. Horita, Y. Nakata and A. Shimoyama, Alignment of grain boundary in a Si film crystallized by a linearly polarized laser beam on a glass substrate. Applied Physics Letters, 78(15) (2001) 2250-2252.
DOI: 10.1063/1.1362336
Google Scholar
[16]
A. Shih, C. -Y. Meng, S. -C. Lee and Ming-Yau Chern, Mechanism for pillar-shaped surface morphology of polysilicon prepared by excimer laser annealing. Journal of Applied Physics, 88(6) (2000) 3725-3733.
DOI: 10.1063/1.1288784
Google Scholar
[17]
K. Nishioka and S. Horita, Periodic arrays of submicron Si and Ni dots on SiO2 fabricated using linearly polarized Nd: YAG pulsed laser. Applied Physics A, 91(2) (2008) 235-240.
DOI: 10.1007/s00339-008-4401-x
Google Scholar
[18]
J.F. Young, J.S. Preston, H.M. van Driel and J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Physical Review B, 27(2) (1983) 1155-1172.
DOI: 10.1103/physrevb.27.1155
Google Scholar
[19]
H.M. Vandriel, J.E. Sipe and J.F. Young, Laser-induced coherent modulation of solid and liquid surfaces. Journal of Luminescence, 30(1-4) (1985) 446-471.
DOI: 10.1016/0022-2313(85)90071-7
Google Scholar
[20]
J. Bonse, A. Rosenfeld and J. Kruger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. Journal of Applied Physics, 106(10) (2009).
DOI: 10.1063/1.3261734
Google Scholar