Internally Cooled Toric Tools for Grinding of Medical Ceramics

Article Preview

Abstract:

The application of ceramics for knee prostheses promises a significant extension of the lifespan compared to conventional metal implants due to their outstanding mechanical and tribological properties. Nevertheless, grinding operations at the bone-faced surface of ceramic knee implants are limited. These limitations arise from an unfavorable accessibility of coolant lubricant. Caused by undercuts and concave surfaces the external coolant jet is deflected and does not reach the contact zone. In this paper, a prototype of a toric grinding tool with internal coolant supply is introduced. This innovative tool design enables a reliable and economic grinding process of the bone-faced surface of ceramic knee implants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

678-683

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] OECD, Health at a Glance: Europe 2014, OECD Publishing. http: /dx. doi. org/10. 1787/ health_glance_eur-2014-en, (2014).

DOI: 10.1787/45c2530e-pt

Google Scholar

[2] M. van der Meer, Bearbeitung keramischer Funktionsflächen, Dr. -Ing. thesis, PZH-Verlag, (2011).

Google Scholar

[3] A. Müller, Polieren keramischer Knieimplantate mit nachgiebigen Diamantwerkzeugen, Dr. -Ing. thesis, PZH-Verlag, (2014).

Google Scholar

[4] B. Denkena, J. Köhler, A. Turger, P. Helmecke, T. Correa, C. Hurschler, Manufacturing conditioned wear of all-ceramic knee prostheses, Procedia CIRP 5 (2013) 179 - 184.

DOI: 10.1016/j.procir.2013.01.036

Google Scholar

[5] B. Denkena, M. van der Meer, Diamond tools for the grinding of complex ceramic implant surfaces, Adv. Mat. Res. 76-78 (2009) 33-37.

DOI: 10.4028/www.scientific.net/amr.76-78.33

Google Scholar

[6] P. Bergschmidt, C. Lohmann, D. Ganzer, R. Bader, S. Finze, G. Kundt, C. Hauzeur, C. Lukas, W. Rüther, W. Mittelmeier, W, Knieendoprothetik mit keramischen Femurkomponenten – Nationale prospektive Multicenterstudie zum klinischen und radiologischen Outcome, Der Orthopäde 40 (2011).

DOI: 10.1007/s00132-010-1649-6

Google Scholar

[7] J. Aurich, P. Herzenstiel, B. Kirsch, Experimental results using a grinding wheel with an internal cooling lubricant supply, Proceedings of 4th CIRP International Conference on High Performance Cutting, (2010).

DOI: 10.1007/s11740-010-0289-3

Google Scholar

[8] R. Crowninshield, J. Jennings, M. Laurent, W. Maloney, Cemented femoral component surface finish mechanics, Clin Orthop Relat Res 355 (1998) 90-102.

DOI: 10.1097/00003086-199810000-00010

Google Scholar

[9] W. Walsh, M. Svehla, J. Russell, M. Saito, T. Nakashima, R. Gillies, W. Bruce, R. Hori, Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness, Biomaterials 20 (2004) 4929-4934.

DOI: 10.1016/j.biomaterials.2003.12.020

Google Scholar

[10] B. Denkena, J. Köhler, M. van der Meer, A roughness model for the machining of biomedical ceramics by toric grinding pins, CIRP J. Manuf. Sci. Technol 6 (2013) 22-33.

DOI: 10.1016/j.cirpj.2012.07.002

Google Scholar

[11] L. Tatzig, B. Hering, B. Denkena, Bonding Systems for Grinding of Medical Ceramics, 48th DGBMT Annual Conference, Hannover, October 8-10, (2014).

Google Scholar

[12] B. Denkena, L. de Leon, L. Behrens, Contact Conditions in 5-Axis-Grinding of Double Curved Surfaces with Toric Grinding Wheels, Adv. Mat. Res. 126 - 128 (2010) 41-46.

DOI: 10.4028/www.scientific.net/amr.126-128.41

Google Scholar