Study of LSMO Ceramics through Different Synthesis Route

Article Preview

Abstract:

The interest in perovskite ceramics has been increased in recent years due to its useful properties and applications in various fields. We report the systematic study to explain the surface morphology and crystallographic nature of LSMO, prepared by solid state reaction and ball milling technique. The Density of the samples was calculated by Archimedes’s principle. The X-ray diffraction method was used to study the structural properties of the sintered powder using Philips Pro X’pertPANalytical. It exhibit dominant peak at (110) , (024) reflections , which confirms a polycrystalline nature of the powder. The surface morphology and elemental analysis of the samples is done by FEG-scanning electron microscope and energy dispersive spectrometry (EDS), confirms the absence of impurities in the samples. The analysis of FEG-SEM results and crystallite size verify the arrangement of LSMO particles in the range of 40-60 nm. The results show that the synthesis of LSMO ceramics in nanoparticle range is possible by the said techniques.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-114

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh and L.H. Chen, Science, 264, 413 (1994).

Google Scholar

[2] P. Kameli,H. salamati,A. aezami,J. Appl. Phys. 100(2006)10053917.

Google Scholar

[3] T. Wang, X. Fang, W. Dong, R. Tao, Z. Deng, D. Li, Y. Zhao, G. Meng, S. Zhou, X. Zhu, J. Alloy Compd. 458 (2008) 248.

Google Scholar

[4] P. Dey T.K. Nath, Appl. Phys. Lett. 87(2005) 162501.

Google Scholar

[5] P. Schiffer, W. Bao, S.W. Cheong, Physical Review Letters 75 (1995) 3336.

Google Scholar

[6] C.N.R. Rao, R. Mahesh, A.K. Raychaudhuri, R. Mahendiran, Journal of Physics and Chemistry of Solids 59 (1998) 87.

Google Scholar

[7] Z.X. Cheng H.F. Zhen A.H. Li,X.L. wang,H. limura,J. of Crystal Growth, 275(2005)e2415-e2419.

Google Scholar

[8] Z. Xiaoxia, W. Xiaojun, Ch. Baojiu, M. Qingyu, D. Weihua, R. Guozhong, Y. Yanmin,J. Alloys Compd. 433 (2007) 352.

DOI: 10.1016/s1002-0721(07)60036-2

Google Scholar

[9] W. Xiao-Xiao, W. Jing, S. Jian-Xin, S. Qiang, G. Meng-Lian, Mat. Res. Bull. 42 (2007)1669.

Google Scholar

[10] A.V. Zaushitsyn, V.V. Mikhailin, A. Yu. Romanenko, E.G. Khaikina, O.M. Basovich, V.A. Morozov, B.I. Lazoryak, Inorg. Mat. 41 (2005) 766.

DOI: 10.1007/s10789-005-0206-x

Google Scholar

[11] Z. Qihua, H. Pei, P. Ming, L. Hongbin, G. Menglian, S. Qiang, Solid State Comm. 149(2009) 880.

Google Scholar

[12] Ch. Chuang-Hung, W. Ming-Fang, L. Chi-Shen, Ch. Teng-Ming, J. Solid State Chem. 180 (2007) 619.

Google Scholar

[13] U. Balachandran, N.G. Eror, J. Solid State Chem. 39 (1981)351.

Google Scholar

[14] B.F. Flandermeyer, A.K. Agarwal, H.U. Anderson, J. Mater. Sci. 19 (1984) 2593.

Google Scholar

[15] M. Talati and P.K. Jha, Phys. Rev. B74, 134406 (2006).

Google Scholar

[16] M. Talti and P.K. Jha, Comp. Mat. Sci37, 64 (2006).

Google Scholar

[17] Swapnilkumar S. Patil, Prafulla K. Jha, and Parag Bhargava, AIP Conference Proceedings, 1661, 070009 (2015).

Google Scholar

[18] C.N.R. Rao, B. Raveau, Transition Metal Oxides. Structure, Properties, Synthesis of Ceramic Oxides, Wiley-VCH, NY, (1998).

Google Scholar