[1]
J. D. Rowley, The critical role of chromosome translocations in human leukemias. Annu. Rev. Genet. 32 (1998) 495-519.
DOI: 10.1146/annurev.genet.32.1.495
Google Scholar
[2]
P. Ernst, J. Wang, S. J. Korsmeyer, The role of MLL in hematopoiesis and leukemia. Curr. Opin. Hematol. 9 (2002) 282-7.
Google Scholar
[3]
P. H. Sorensen, et al. Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J. Clin. Invest. 93 (1994) 429–437.
DOI: 10.1172/jci116978
Google Scholar
[4]
M. C. Cox, et al. Chromosomal aberration of the 11q23 locus in acute leukemia and frequency of MLL gene translocation: results in 378 adult patients. Am. J. Clin. Pathol. 122 (2004) 298–306.
DOI: 10.1309/rx27r8gjqm330c22
Google Scholar
[5]
O. Bernard, R. Berger, Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations. Genes, Chromosomes and Cancer. 13 (1995) 75–85.
DOI: 10.1002/gcc.2870130202
Google Scholar
[6]
P. M. Ayton, E. H. Chen, M. L. Cleary. Binding to nonmethylatedCpG DNA is essential for target recognition, transactivation, and myeloid transformation by an MLL oncoprotein, Mol. Cell Biol. 24, 23, (2004) 10470-8.
DOI: 10.1128/mcb.24.23.10470-10478.2004
Google Scholar
[7]
F. E. Erfurth, R. Popovic, J. Grembecka, et al. MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression. Proc. Natl. Acad. Sci. USA. 105 (2008) 7517-7522.
DOI: 10.1073/pnas.0800090105
Google Scholar
[8]
S. A. Armstrong, J. E. Staunton, L. B. Silverman, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30 (2002) 41-47.
DOI: 10.1038/ng765
Google Scholar
[9]
ACD/ChemSketch Freeware, version 11. 00, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www. acdlabs. com, (2015).
Google Scholar
[10]
R. Thomsen, M. H. Christensen, MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 49(2006) 3315-3321.
DOI: 10.1021/jm051197e
Google Scholar
[11]
M. Dave, A. Daga, R. Rawal, Structural and functional analysis of AF9-MLL oncogenic fusion protein using homology modeling and simulation based approach. Int. J. pharm. Pharm. sci. 7, 12, (2015) 155-161.
Google Scholar
[12]
B. Hess, C. Kutzner, D. E. van der Spoel, E. Lindahl, GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory. Comput. 4 (2008) 435–447.
DOI: 10.1021/ct700301q
Google Scholar
[13]
W. L. Jorgensen, J. Tirado-Rives, The OPLS potential functions for proteins. energy minimizationsfor crystals of cyclic peptides andcrambin, J. Am. Chem. Soc. 110(1988) 1657–1666.
DOI: 10.1021/ja00214a001
Google Scholar
[14]
T. Cierpicki, L. E. Risner, J. Grembecka, S. M. Lukasik, R. Popovic, M. Omonkowska, D. D. Shultis, N. J. Zeleznik-Le and J. H. Bushweller, Structure of the MLL CXXC domain – DNA complex and its functional role in MLL-AF9 leukemia. Nat. Struct. Mol. Biol. 17 (2010).
DOI: 10.1038/nsmb.1714
Google Scholar